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9.9 Additional Problems

If a problem is not marked with a computer icon then you should be able to do all integrals by

hand and/or by using the table in Appendix G.

9.128 In this problem you are going to create
a Fourier series for the function f (x) = 3x
on the domain [0, 2].
(a) The process begins with a periodic exten-

sion of f (x) (neither even nor odd). What
is the period of this extension? What is the
value of L in the Fourier series formulas?

(b) Write the formulas for a0, an and bn with-
out yet evaluating the integrals.

(c) Plot the periodic extension from
x = −4 to x = 4.

(d) When you evaluate your integrals you
can choose to use any limits of integra-
tion that are separated by one full period.
Which full period is easiest to use? Explain
why by referring to your plot.

(e) Finish finding the Fourier series for f (x).

For Problems 9.129–9.133, find the Fourier series of
the indicated function twice, first using sines and
cosines and then using complex exponentials. If it is
given over a finite domain assume that it extends
periodically beyond that domain. (Do not assume an
even or odd extension.)

9.129 f (x) = sin(2x) + cos(3x)
9.130 f (x) = x + 3, −𝜋 < x < 𝜋

9.131 f (x) = sin5 x. Hint: don’t just naively
accept what the computer gives you
if it doesn’t make sense.

9.132 f (x) = x2 sin x, 0 < x < 𝜋

9.133 f (x) = sin(2x) + cos(𝜋x), 0 < x < 1. Hint:
the easiest way to evaluate the sine and
cosine integrals is to rewrite them as
complex exponentials.

9.134 In each part of this problem find a sine/cosine
Fourier series for the given function on the
given domain. In Part (a) you will do this
in the usual way, by evaluating integrals for
the coefficients. Using that Fourier series,
you should be able to do the remaining
parts without evaluating any integrals.
(a) f (x) = x from x = 0 to x = 1
(b) g (x) = x + 1 from x = 0 to x = 1

(c) h(x) = −x from x = 0 to x = 1
(d) i(x) = 2x from x = 0 to x = 1∕2

9.135

(a) Write a Fourier series that represents the
function y = x2 from x = −20 to x = 20.

(b) Draw the 1st , 5th, 20th, and 100th par-
tial sums of the resulting series on
one plot, along with y = x2.

9.136 The function f (x) equals 2x on −3 ≤ x ≤ 3 and
then repeats forever with a period of 6.
(a) Draw f (x) showing at least three

full periods.
(b) Create a Fourier series for f (x) based

on sines and cosines.
(c) Create a Fourier series for f (x) based

on complex exponentials.
(d) Is f (x) odd, even, or neither? How is this

reflected in both Fourier series?

9.137 The function g (x) equals 6 − 2x on 0 ≤ x ≤ 3
and then repeats forever with a period of 3.
(a) Draw g (x) showing at least three

full periods.
(b) Create a Fourier series for g (x) based

on sines and cosines.
(c) The function g (x) is neither odd nor

even, but g (x) − 3 is. Is it even or
odd, and how can you see that in the
Fourier series you just wrote?

(d) Create a Fourier series for g (x) based
on complex exponentials.

9.138 (a) Show that the functions sin(n𝜋x∕L) and
cos(n𝜋x∕L) for all positive integers n
form an orthogonal set on the inter-
val [−L,L]. (If you’re stuck you may
find it helpful to look at Section 9.3
Problem 9.32.)

(b) Show that if you add any function
sin(k𝜋x∕L) with non-integer k the set
is no longer orthogonal.

9.139 The drawing below, repeating the
same pattern forever to both left
and right, represents the function
y(x, t) during the time−2𝜋 < t < 2𝜋.
Then the function suddenly switches: all the
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y = 1 values move down to y = −1 and vice
versa, and it stays like that for 4𝜋 seconds.
Then it switches back…and so on forever.
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f(x)

(a) What is the period of this function in x?
(b) What is the period of this function in t?
(c) Is f (x, t) even in x, odd in x, or neither?
(d) Is f (x, t) even in t, odd in t, or neither?
(e) Create a multivariate Fourier series

representation of y(x, t).
9.140 The drawings below represent y = e−x2

and its Fourier transform.
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(a) Copy these drawings onto two
separate graphs and label them
y = f (x) and y = f̂ (p).

(b) Add to the first drawing a different graph
labeled g (x) = 2f (x), and add to the sec-
ond drawing a different graph labeled
y = ĝ (p). These drawings do not need
to be exact, but they should show the
correct transformations of the origi-
nal graphs. No computation should be
required.

(c) Copy the original drawings again onto
separate graphs. Then add new graphs
labeled h(x) = f (2x) and y = ĥ(p).

9.141 Let f (x) = x−1∕3 from −𝜋 to 𝜋

and repeat thereafter.
(a) This function only satisfies the Dirich-

let conditions if ∫ 𝜋

−𝜋 f (x)dx is finite.
Show that it is. (Because of the verti-
cal asymptote, you have to break it up
into ∫ 0

−𝜋 f (x)dx + ∫ 𝜋

0 f (x)dx and show
that both parts are finite.)

(b) Use a computer to generate the 20th
partial sum of the Fourier series for this
function between x = −𝜋 and x = 𝜋, and

then plot that series from x = −2𝜋
to x = 2𝜋.

(c) The resulting graph should look a lot like
x−1∕3 between −𝜋 and 𝜋. What does the
graph do at x = 0 and why? What does
the graph do at x = 𝜋 and why?

(d) What are the values of the Fourier
series at x = 0 and x = 𝜋? Why do
these values make sense?

9.142 A simple harmonic oscillator with an
external driving force obeys the follow-
ing differential equation.

d2x
dt2

+ 4x = f (t) (9.9.1)

(a) Find the complementary solution that you
get if you replace f (t) with 0. Your answer
should have two arbitrary constants in it.

(b) Let f (t) = sin t. Find a particular solution
that satisfies the differential equation
with no arbitrary constants and add
it to the complementary solution
to get the full solution. Hint: guess
a solution of the form x(t) = k sin t
and plug it in to find out what k has
to be.

(c) Find the general solution if f (t) = sin(𝜔t)
where 𝜔 is an unspecified constant.

(d) Find the general solution if f (t) is a square
wave, equal to 1 from t = 0 to t = 1, −1
from t = 1 to t = 2, and repeated peri-
odically thereafter. Hint: At the risk of
stating the obvious, the solution will
involve taking a Fourier series.

9.143 [This problem depends on Problem 9.142.] Find
the general solution to Equation 9.9.1 if
f (t) is a square wave equal to 2 from t = 0
to t = 1, 0 from t = 1 to t = 2, and repeated
periodically thereafter. Hint: you can use
your work from Problem 9.142 but you
will need to add an additional particular
solution.

9.144 The temperature distribution on a disk is best
described in polar coordinates, where 𝜌 goes
from 0 (the center) to the radius R (the rim),
and 𝜙 goes from 0 to 2𝜋. If the disk has no
heat sources or sinks then the temperature dis-
tribution throughout the disk is determined
by the “boundary condition”: the temperature
along the rim. In Chapter 11 you will show
(here you can take our word for it) that if
the outer edge is held at T (R , 𝜙) = T0 sin(k𝜙)
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then the temperature throughout the disk
will obey the following equation.

T (𝜌, 𝜙) = T0
(
𝜌

R

)k
sin(k𝜙)

(a) What are the units of the constants
k and T0?

(b) If the temperature on the edge of
the disk is continuous, what values
of k are allowed?

(c) If you start at a point on the edge where
the temperature is T0 and move directly
toward the center, describe how the tem-
perature will change as you move. What if
you start at a point on the edge where the
temperature is −T0? What about zero?

(d) Write the temperature distribution
on the disk if the temperature on
the outer ring is 10 sin(4𝜙).

(e) Write the temperature distribution
on the disk if the temperature on
the outer ring is 10 sin(5𝜙).

(f) Describe qualitatively the differences
in the two temperature distributions
you just wrote down. (You should note
two important differences.)

If the temperature on the outer ring
is a sum of sines then the temperature
throughout the disk will be the sum of the
corresponding solutions. For example, if
T (R , 𝜙) = sin(𝜙) + 15 sin(2𝜙), then T (𝜌, 𝜙) =
(𝜌∕R) sin(𝜙) + 15(𝜌∕R)2 sin(2𝜙).
(g) Write the temperature distribution on

the disk if the temperature on the outer
ring is 2 sin(3𝜙) − 6 sin(4𝜙).

(h) Now consider a disk whose outer ring
is held at T = T0 for 0 < 𝜙 < 𝜋, and
at T = −T0 for 𝜋 < 𝜙 < 2𝜋. Rewrite
the outer ring temperature T (R , 𝜙) as
a Fourier series. Then write the tem-
perature distribution for the entire
disk T (𝜌, 𝜙) as a Fourier series.

9.145 The Gibbs Phenomenon If a function
f (x) satisfies the Dirichlet conditions then its
Fourier series converges to its value where it
is continuous and converges to the average
of its left and right limits at jump disconti-
nuities. However, the convergence at such
discontinuities suffers from a problem known
as the Gibbs phenomenon. You’ll explore
this by considering the function f (x) defined
as the odd extension of f (x) = 1 from x = 0
to x = 1.
(a) Find the Fourier sine series of f (x).
(b) Plot the partial sum of the Fourier series

including the first three non-zero terms.
Your plot should go from x = −1 to x = 1
and should include horizontal lines at
y = −1 and y = 1 for reference.

(c) For negative x the series should be near
−1 and for positive x its should be near
1, but in going from negative to posi-
tive it “overshoots” by a bit, going higher
than 1. Looking at your plot, estimate
the amount it overshoots by.

(d) Show all of the partial sums up through
the sixth non-zero term together on one
plot. As you use more terms, you should
find that the amount by which the series
overshoots 1 does not decrease, but that it
moves back down near 1 more quickly.

(e) Plot the 50th partial sum of the Fourier
series and show that it still overshoots
by the same amount. Zoom in your
plot enough to estimate the value of
x at which it returns back to 1 after
overshooting.

(f) The fact that a Fourier series overshoots
a jump discontinuity by an amount that
doesn’t decrease as you add more terms
is the Gibbs phenomenon. Explain
how we can still say that the series con-
verges to the function even though this
occurs.


