
7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 1

CHAPTER 9

Fourier Series and Transforms
(Online)

9.7 Discrete Fourier Transforms
A Fourier series models a function as a discrete set of numbers (coefficients of a sum); a
Fourier integral models a function as a continuous function (the transform). In both cases
the function you start with is continuous. In this section we will use Fourier analysis on a data
set that is discrete to begin with: a set of points, or data, rather than an algebraically defined
function.

9.7.1 Explanation: Discrete Fourier Transforms

Throughout this chapter we have used Fourier analysis (series or transforms) to see what
oscillations make up a particular function. In practice, though, we rarely measure a function
such as f (x) = e−x2 . We measure data points.

Consider, for example, the Motivating Exercise (Section 9.1). Observers repeatedly mea-
sure the velocity of a star over many years. A star with no planets around it should have a
constant velocity, a star with one planet should oscillate like a sine wave, a star with two planets
should follow a superposition of two sine waves, and so on. A “discrete Fourier transform”
starts with individual velocity measurements and finds the oscillations represented by those
points, enabling us to determine the presence of planets.

But Figure 9.1 doesn’t look like a superposition of sine waves, does it? Real oscillations are
buried under randomnoise caused by limitations of themeasuring instruments, atmospheric
distortion, and other factors. These random fluctuations are often many times greater than
the oscillations themselves. Amazingly, the Fourier transform can generally cut through such
noise to find the underlying order.

f1

f2
f3

0 Δx 2Δx 3Δx
x

f

f0

FIGURE 9.19 With four data
points r = 0, 1, 2, 3.

Below we present the formula for a discrete Fourier trans-
form, but first let’s make sure the letters are clear. Take a look
at Figure 9.19. We begin with a function f (x) representing N
individual points spacedΔx apart. For instance, if we have f (0),
f (20), f (40), and f (60), thenΔx = 20 and N = 4. (The formula
assumesΔx is constant: that is, the points are sampled at evenly
spaced intervals.)

We refer to the data points as f0, f1, f2, f3, and so on. We use
the letter r as an index for this list. In our example above, f3
would mean f (60); more generally, fr means f (rΔx).

Our goal is to express the data as <some coefficient> times an
oscillation of a particular frequency, plus <a different coefficient>

1

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 2

2 Chapter 9 Fourier Series and Transforms (Online)

times an oscillation of a different frequency, and so on. We refer to these coefficients as f̂ 1, f̂ 2
and so on, using n as an index into this list. Below, then, we present the formula for turning
the fr list of data points into the f̂n list of frequency coefficients.

The Formula for a Discrete Fourier Transform

Suppose a function f (x) is known at N discrete points: fr = f (rΔx) for r = 0, 1,… ,N − 1. The “dis-
crete Fourier transform” (DFT)a of f is a set of points f̂ n with−N ∕2 ≤ n ≤ N ∕2 given by the formula:

f̂ n =
N−1∑
r=0

fr e
−2𝜋inr∕N (9.7.1)

The numbers f̂ n are proportional to the amplitudes of oscillations with frequencies given by:

p = 2𝜋n
NΔx

(9.7.2)

It’s easy to glide over those equations too quickly. To slow down, consider the example of
f̂ 3 generated from a set with N = 100 data points.

∙ Equation 9.7.1 tells us how to find f̂ 3: it is a sum over all the values in the original data
set.

f̂ 3 = f0 + f1e
−6𝜋i∕100 + f2e−12𝜋i∕100

+ f3e−18𝜋i∕100 + · · · + f99e−6(99)𝜋i∕100

Then f̂ 4 is a different sum over the entire original data set, and so on. (Such linear
combinations can be concisely represented with matrices; see Problem 9.114.)

∙ Equation 9.7.2 tells us what f̂ 3 represents: it tells us how much of the original data set
oscillates with frequency 6𝜋∕(100Δx). Note that the denominator NΔx is the entire
span of the original data set which means that 2𝜋∕(NΔx), 4𝜋∕(NΔx), 6𝜋∕(NΔx), etc.
are all the frequencies that fit perfectly into that domain.

As you can see, calculating N -values for your N data points in this way requires summing
N 2 terms. But discrete Fourier transforms are so important that decades of research have
gone into algorithms that can quickly calculate the DFT of a list with billions of input points.
The need to do so arises more often than you might think, in applications ranging from
image manipulation to electronic signal processing.

Interpreting a Discrete Fourier Transform

As with so many of these formulas, Equation 9.7.1 hides a number of subtleties.

∙ The DFT formula assumes that the function you are modeling is periodic, and that
your data represent a full period. For instance (as we mentioned above) if you start
with 100 data points with spacing 1, the terms in the DFT represent a period of 100, a
period of 100/2, a period of 100/3, and so on; all of them start over at precisely 100. If
you inverse transform your DFT you will recreate the original 100 data points and then
reproduce them again and again.

aThe acronym “DFT” is widely used for Discrete Fourier Transform, but unfortunately it has a number of other uses.
The most problematic for our readers may be “Density Functional Theory,” a model of many-body quantum systems
used by physical chemists. There is probably less danger of confusion with the UK’s “Department For Transport.”

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 3

9.7 |Discrete Fourier Transforms 3

∙ Equation 9.7.1 makes no mention of Δx so the DFT depends on the values of your
data points but not on how often they were sampled. If you sample 100 points over the
course of a year, f̂ 3 tells you how much your data oscillate with a period of a third of a
year. If you sample the same 100 points in a minute you will get the same f̂ 3, this time
representing a period of 20 seconds.

∙ Strictly speaking f̂ n is not the amplitude of an oscillation; f̂ n∕N is the amplitude. That
matters for an inverse discrete Fourier transform, but for most purposes we only care
about the relative amplitudes of the oscillations so we ignore that detail.

∙ We said above that Equation 9.7.1 assumes its input (the fr numbers) are periodic,
repeating the same N numbers over and over. The output (the f̂ n numbers) will also
be periodic with period N . For instance if you put in 100 data points you will find that
f̂ 101 = f̂ 1 and f̂ 102 = f̂ 2 and so on. In most cases the frequencies of interest are given
by −N ∕2 ≤ n ≤ N ∕2.4 A negative n just means a negative exponent in the complex
exponential, but n and −n both represent oscillations with the same period, just as
they do in regular Fourier series with complex exponentials.

∙ Just as with a regular Fourier transform, if the input data are real then f̂ −n will always
be the complex conjugate of f̂ n. Since DFTs are generally used to model measured
data, which is by definition real, you can generally get away with only calculating about
half of the amplitudes. (In our example above you could calculate f̂ 0 through f̂ 50 the
hard way and then you would know f̂ −50 through f̂ −1.)

EXAMPLE Discrete Fourier Transform

Problem:

Find a discrete Fourier transform of the list f (0) = 1, f (3) = 4, f (6) = 2, f (9) = 3.

Solution:

We plug f0 = 1, f1 = 4, f2 = 2, f3 = 3, and N = 4 into Equation 9.7.1.

f̂ 0 = 1 + 4 + 2 + 3 = 10
f̂ 1 = 1 + 4e−2𝜋i∕4 + 2e−2𝜋i(2)∕4 + 3e−2𝜋i(3)∕4 = 1 + 4(−i) + 2(−1) + 3i = −1 − i
f̂ 2 = 1 + 4e−2𝜋i(2)∕4 + 2e−2𝜋i(2)(2)∕4 + 3e−2𝜋i(3)(2)∕4 = 1 + 4(−1) + 2 + 3(−1) = −4

It’s worth going through that exercise to see the patterns in the formula. You can see
the r -values counting 0, 1, 2, 3 as you move across the terms in any line, and you can
see the n-values counting 0, 1, 2 as you count down the lines.
We could similarly calculate f̂ −1, but the fact that the inputs were all real

guarantees that f̂ −1 = f̂
∗
1 = −1 + i. (You can do the calculation directly and verify

this.) We know for the same reason that f̂ −2 = f̂
∗
2, and we know from periodicity that

f̂ −2 = f̂ 2. The only way those can both be true is if f̂ 2 is real, which we see it is. With N
real inputs, f̂ N ∕2 will always be real (assuming N is even). Can you see why the same
argument guaranteed that f̂ 0 would be real as well?

So the DFT, from n = −N ∕2 to N ∕2, is (−4,−1 + i, 10,−1 − i,−4).
Once you have gone through the process once or twice, there’s no great value in

repeating it. DFTs are meant for extremely large data sets and are performed by
computers.

4Technically f̂ −N ∕2 = f̂ N ∕2 so you only need to calculate values from n = −N ∕2 + 1 to N ∕2.

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 4

4 Chapter 9 Fourier Series and Transforms (Online)

Question: What does f̂ 2 = −4 represent?

Answer:

From Equation 9.7.2 it represents the amplitude associated with the frequency
2𝜋(2)∕(4 × 3) = 𝜋∕3.

Inverse Discrete Fourier Transforms

When we take the Fourier series of a function we get a list of coefficients cn. If we multiply
each of those coefficients by e𝜋inx∕L and add them, we recover the original function. In a sim-
ilar way, a discrete Fourier transform takes as input the value of a function at certain discrete
points and gives as output the coefficients f̂ n, and the “inverse discrete Fourier transform”
calculates the original values fr from those coefficients.

Inverse Discrete Fourier Transform

The inverse discrete Fourier transform of a set of points f̂ n is

fr =
1
N

N ∕2∑
n=−N ∕2+1

f̂ ne
2𝜋inr∕N (9.7.3)

(The sum can go over any N consecutive values of n, and it is often written from 0 to N − 1, but we
prefer this way because it focuses on the most physically meaningful values. Clearly for odd N you
would have to adjust the limits of the sum.)

Recall that the x-value of each fr is rΔx. If we plug r = x∕Δx into Equation 9.7.3 the expo-
nential becomes e2𝜋in∕(NΔx)x , which is why we said above that each mode f̂ n has frequency
2𝜋n∕(NΔx). We can also see from this formula that f̂ n is not technically the coefficient of
the oscillation; f̂ n∕N is.

Remember that the DFT coefficients f̂ n are periodic; they are N numbers that repeat
forever. You can generate an inverse DFT from any N such numbers in a row and get a
function that perfectly replicates the original points you used to create your DFT. Between
those points, however, the behavior may surprise you unless you use the range specified in
Equation 9.7.3. See Problem 9.107.

With the DFT and inverse DFT formulas you can translate a data set into “Fourier space”
and then recover the original data. That may not seem very useful, but for many applications
we can transform a set of data into Fourier space, manipulate it in some way, and then do an
inverse transform to get back to regular space. This is illustrated in the example below.

EXAMPLE Smoothing the Rough Edges

Problem:

Copy an image from the Web and eliminate all high frequency oscillations from it.

Solution:

We chose an image of Rodin’s sculpture “The Thinker.” We imported this photo into
Mathematica, which stored it as a 3072 × 2048 grid of numbers. We then asked

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 5

9.7 |Discrete Fourier Transforms 5

Mathematica to take a discrete Fourier transform of that grid of numbers. (We
haven’t given you the formula for a multivariate discrete Fourier transform, but
Mathematica’s built-in DFT routines knew just what to do.) The result was a
3072 × 2048 grid of complex numbers representing the DFT. An inverse Fourier
transform of this grid reproduced the original picture exactly.

We then set about 99% of the numbers in the DFT to zero, leaving only the low
frequency terms. An inverse Fourier transform of the resulting frequencies produced
a softened version of the original. Finally, we set over 99.99% of the numbers in the
DFT to zero. An inverse transform of the resulting set was still very recognizable, but
blurry.

R
af

ae
l R

am
ire

z
Le

e/
Sh

ut
te

rs
to

ck
.

Image reproduced from 100% of the data in Fourier space, image reproduced from 1% of the data, and

image reproduced from 0.006% of the data

This technique can be used to deliberately soften images, but it also provides
powerful data compression. You can store pictures in a fraction of the space required
for an uncompressed image.

The implications for downloading pictures (in a Web browser for instance) are also
important. If you download a picture as pixels the user sees the top row of pixels
appear at first, filling in toward the bottom over time. But if you download the same
information as frequencies the user sees the entire image almost instantly,
sharpening to full resolution over time.

Where Did Those Formulas Come From?

Consider a regular Fourier series for a function with period 2L: f (x) =
∑
cne

𝜋inx∕L where the
coefficients are given by

cn = 1
2L ∫

2L

0
f (x)e−𝜋inx∕Ldx

If we know the function f (x) we can find the coefficients cn by integrating, analytically or
numerically. If we only know f (x) at N evenly spaced intervals x = rΔx then we must approx-
imate this integral with a sum.

cn ≈ 1
2L

N−1∑
r=0

f (rΔx)e−𝜋inrΔx∕LΔx

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 6

6 Chapter 9 Fourier Series and Transforms (Online)

The spacing Δx is related to the total period 2L and the number of sample points N by
Δx = 2L∕N . Substituting this in gives

cn ≈ 1
N

N−1∑
r=0

f (rΔx)e−2𝜋inr∕N

We could have left the formula like this, but historically the terms in a DFT are not defined to
make f̂ n ≈ cn, but rather f̂ n ≈ Ncn, which thus eliminates the 1∕N from the formula, giving
us Equation 9.7.1. A similar calculation can be used to derive Equation 9.7.3 for the inverse
discrete Fourier transform.

A Few Practical Notes

While discrete Fourier transforms have been around for centuries, their use didn’t become
common until Cooley and Tukey published a DFT algorithm that is in many cases millions of
times faster than straightforwardly applying Equation 9.7.1.5 That algorithm is now known
as a “Fast Fourier Transform.” One of us (GF) runs simulations of the early universe using
hundreds of processors to take FFTs of datasets with over 60 billion points, and such large
transforms are common in many areas of science and engineering.

As a practical matter, the FFT is most efficient when the number of data points N is a
power of 2. If you are working with any other size data set it is usually worth padding the end
with extra zeroes to make N a power of 2.

It’s also important to remember that a DFT gives us oscillations at the frequencies
p = 2𝜋∕(NΔx), 4𝜋∕(NΔx)…𝜋∕Δx. That highest frequency p = 𝜋∕Δx is called the “Nyquist
frequency,” and it sets a limit on how high a frequency we can find from our data. The fact
that the Nyquist frequency is inversely proportional to Δx makes sense: if we sample once
per second, we won’t find an oscillation that happens ten times per second! If a function
oscillates much faster than our sampling rate, our discrete Fourier transform will be subject
to “aliasing.” The power that is actually in modes above the Nyquist frequency will appear
incorrectly in the lower frequency modes, causing them to come out higher than they
should. As a practical matter you should either know ahead of time what range of oscillation
frequencies your data is likely to have or figure it out by trial and error, and make sure you
sample frequently enough that your Nyquist frequency is higher than the highest significant
frequency of your physical system.

9.7.2 Problems: Discrete Fourier Transforms

9.99 Walk-Through: Discrete Fourier Trans-

forms. You’ve measured the following
data points for a function f (x): f (0) = 2,
f (2) = 3, f (4) = −6, f (6) = 0.
(a) Use Equation 9.7.1 to calculate

f̂ 0, f̂ 1, and f̂ 2.

(b) Find f̂ −1 without using Equation 9.7.1.
This should take no more than 20 seconds.

(c) What are f̂ −2 and f̂ 3? Again, more than
20 seconds means you’re doing it wrong.

(d) What frequencies p are represented
by the terms f̂ −1, f̂ 0, f̂ 1, and f̂ 2?

For Problems 9.100–9.105 find the discrete Fourier
transform of the given list of numbers, going from
n = −N ∕2 to N ∕2. Give the smallest magnitude
non-zero frequency and the largest frequency (the
Nyquist frequency) represented by the DFT.

9.100 f (0) = 1, f (5) = 2

5Cooley, James W.; Tukey, John W. (1965). “An Algorithm for the machine calculation of complex Fourier series”.
Math. Comput. 19: 297–301. The algorithm had been independently discovered numerous times before Cooley
and Tukey, beginning with Gauss in 1805. For a discussion of the FFT algorithm itself see “Numerical Recipes” by
Press, et. al.

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 7

9.7 |Discrete Fourier Transforms 7

9.101 f (0) = 10, f (.6) = −1, f (1.2) = 0, f (1.8) = −7
9.102 f (0) = 1, f (.2) = 2, f (.4) = −2, f (.6) = −1
9.103 f (0) = 5, f (1) = 4, f (2) = 3, f (3) = 2

9.104 f (0) = 5 + i, f (2) = i, f (4) = 3, f (6) = 1 − i
9.105 f (0) = 2, f (4) = 4, f (8) = 0, f (12) = −6,

f (16) = 0, f (20) = −4

9.106 Calculate the DFT of f (0) = 5, f (5) = −5,
f (10) = 5, f (15) = −5. Explain why your results
make sense. In other words, how could you
have predicted most of the values you found
without having to calculate anything?

9.107 Consider the points f (0) = 2, f (3) = 7,
f (6) = −2, f (9) = 1, f (12) = 4, f (15) = −3,
f (18) = 2, f (21) = 2.
(a) Calculate the DFT coefficients f̂ n

for 0 ≤ n ≤ 7.
(b) On one plot show the real and imaginary

parts of (1∕8)
∑7
n=0 f̂ ne

2𝜋inx∕12. Show the
original 8 points fr on the same plot.

(c) Repeat Part (b) for −3 ≤ n ≤ 4. Hint: you
can easily get all the f̂ n -values you need
from the ones you already calculated.

(d) On one plot show the original points
fr and the real and imaginary parts of
(1∕8)[(1∕2)(f̂ −4e−8𝜋inx∕12 + f̂ 4e8𝜋inx∕12 +∑3
n=−3 f̂ ne

2𝜋inx∕12].
(e) You should have found that all three func-

tions you just defined go through all of
the original data points fr , but behave
differently in between them. Looking at
your plots, which of these functions is
likely to be the most useful for model-
ing your original function, and why?

9.108 Have a computer generate a table of
256 points f (x) where x goes from 0 to 30. At
each point let f (x) = 2 sin(2x) + 2 sin(5x) + R ,
where R is a random number (different at
each point) from −4 to 4. Plot the data points
on a graph of f (x) vs. x. Then take a discrete
Fourier transform of the data and plot the
results on a graph of f̂ (p) vs. p. Explain why
the results appear the way they do.

9.109 Use x = rΔx, p = nΔp = 2𝜋n∕(NΔx), and
f̂ n = Ncn to rewrite Equation 9.7.3 so it looks
like the usual expression for a Fourier series.
A normal Fourier series has infinitely many
terms, but this one will only have N . All
the others can be taken to be zero.

9.110 Plug Equation 9.7.1 into Equation 9.7.3
and verify that it does simplify to fr . At
some point in the calculation you should

encounter a term of the form
∑N ∕2
j=−N ∕2+1 e

2𝜋ki∕N ,
where k is an integer. This sum equals
zero unless k = 0. (You can easily figure
out what it equals when k = 0.)

9.111 Use Equation 9.7.1 to show that f̂ n+N = f̂ n.
Formally a DFT is periodic in frequency
space, but in practice that really means
all of the frequencies outside the range
|p| ≤ 𝜋∕Δx are meaningless.

9.112 Consider the function f (x) = ecos x .
(a) Have a computer generate a table of

200 values of f (x) ranging from x = 0 to
x = 99.5. Plot these values on a graph of f
vs. x. (Just plot the values in your table,
not the curve for the function.)

(b) Take a discrete Fourier transform of your
list of values. What frequency is associated
with the nth term in that list? Plot the mod-
uli of the values of the discrete Fourier
transform from n = 1 to n = 100, with
the horizontal axis showing the associ-
ated frequencies. (Leave out n = 0, which
just represents the constant term.)

(c) What frequency shows the highest peak
in the DFT? What does that tell you
about the original function? (Hint:
you could have predicted this peak
before doing the calculations.)

(d) What frequency shows the second highest
peak in the DFT? What does that tell you
about the original function? (You proba-
bly couldn’t have predicted this one.)

9.113 Consider the list
fr = (1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2).
(a) Plot these data points, using the

x-values 1, 2, 3, 4, 5, 6,….
(b) Take a discrete Fourier transform of

the list, then take an inverse discrete
Fourier transform, and then plot the
resulting points. This plot should look
identical to the previous one.

(c) Take a discrete Fourier transform of fr ,
set f̂ 0 = 0 in the resulting list, then take
its inverse discrete Fourier transform
and plot the results. How does this look
different from your original plot?

(d) Take a discrete Fourier transform of fr ,
set f̂ 2 = f̂ −2 = 0, take an inverse discrete
Fourier transform, and plot the results.
How does this plot look different from
your original plot? Hint: some computers
store the results in the order f̂ 0–f̂ N−1, so
the component f̂ −2 may be stored as f̂ N−2.

7in x 10in Felder c09_online.tex V3 - January 24, 2015 2:03 P.M. Page 8

8 Chapter 9 Fourier Series and Transforms (Online)

9.114 (This problem requires linear algebra.)
(a) Starting from Equation 9.7.1 write a

2 × 2 matrix for converting a pair of
data points fr into a DFT f̂ n. (Remem-
ber that n and r go from 0 to 1.)

(b) Starting from Equation 9.7.3 write a 2 × 2
matrix for converting f̂ n into fr .

(c) Prove that the two matrices you just
wrote are inverses. What does this tell
you about the two transformations?

(d) Write a matrix to find f̂ 0, f̂ 1 and f̂ 2
from three data points f0, f1, f2.

9.115 Look through the Example “Smoothing
the Rough Edges” on Page 4. Repeat this pro-
cess for another image. Choose an image,
import it into a computer algebra program,

take a discrete Fourier transform of the image
data, set the high frequency components to
zero, and inverse transform it to get a new
image. You may need to do some trial and
error to figure out exactly which components
to eliminate. Be aware that when you elimi-
nate Fourier coefficients the inverse discrete
Fourier transform will usually give you com-
plex numbers. The easiest way to deal with this
is to just take the real part after you take the
IDFT. Hint: If you use a color image then each
pixel will most likely be a list of three numbers
instead of a single number. You can still do
the same thing. Each component in Fourier
space will be a list of three numbers and you
can set them all equal to zero for the high
frequency modes.

