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CHAPTER 6

Linear Algebra I (Online)

6.10 Additional Problems
6.220 The “main diagonal” of a matrix goes from the

upper left to the lower right. The “trace” of a
square matrix is defined as the sum of the ele-
ments on the main diagonal. Write an expres-
sion in summation notation for the trace of
an N × N matrix 𝐌. Your answer should be
in terms of the elementsMij of the matrix.

6.221 The “Kronecker delta” 𝛿ij is defined as 1
when i = j and 0 when i ≠ j. Using the
Kronecker delta as the definition of the
elements of a 3 × 3 matrix, write that
matrix in standard form. You should rec-
ognize the matrix you write down.

6.222 Suppose a typical hive of honeybees con-
tains 100,000 workers and 2000 drones,
and a typical colony of carpenter ants con-
tains 1500 workers and DA drones.
(a) Write a matrix to convert from “num-

ber of bee hives and number of ant
colonies” to “number of workers
and number of drones.”

(b) Write a matrix to convert from “num-
ber of workers and number of drones”
to “number of bee hives and num-
ber of ant colonies.”

(c) For what value of DA is it impossi-
ble to answer Part (b)?

(d) Explain why your answer to Part (c)
makes sense without making any refer-
ence to matrices or linear algebra.

6.223 Vector A⃗ = −î − ĵ and vector B⃗ = 2î.

(a) Do vectors A⃗ and B⃗ form a basis for all
vectors on the xy-plane? How
do you know?

(b) Draw the vectors 3A⃗ − B⃗ and −A⃗ + 3B⃗.
(c) The vector X⃗ = aA⃗ + bB⃗ can also be rep-

resented as xî + yĵ. Write a matrix to
convert from a and b to x and y.

(d) Write a matrix to convert from
x and y to a and b.

(e) Use your matrix from Part (d) to
convert the matrix 3î + 4ĵ into the
A⃗B⃗ representation.

(f) Show graphically that your answer
to Part (e) does in fact add up
to 3î + 4ĵ.

6.224 In this problem you will prove that the
determinant of the identity matrix 𝐈 is 1
in any number of dimensions.
(a) Prove that |𝐈| = 1 for a 2 × 2 matrix.
(b) Prove that if |𝐈| = 1 for an n × n matrix,

then |𝐈| = 1 for an (n + 1) × (n + 1)
matrix. Hint: write out what 𝐈 looks
like!

(c) Explain this result in terms of the
effect this matrix has in transforming
shapes.

6.225 You cannot use a matrix to convert Carte-
sian coordinates to spherical coordinates
because the transformation is not linear.
You can, however, use a matrix to con-
vert a vector defined at a given point from
the î ĵ k̂ basis to the r̂𝜃�̂� basis.
(a) At the point (1, 0, 1) (in Cartesian coor-

dinates) r̂ = (1∕
√
2)(î + k̂), 𝜃 = (1∕

√
2)

(î − k̂), and �̂� = ĵ. Write a matrix for con-
verting a vector defined at that point from
Cartesian to spherical coordinates.

(b) Write a matrix for converting a vector
defined at the point (1, 1, 0) from Carte-
sian to spherical coordinates.

(c) Write a matrix for converting a vector
defined at the point (x, y, z) from Carte-
sian to cylindrical coordinates. (We
switched to cylindrical for the general
case because it’s easier than spherical.)
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6.226 The image above shows three coupled
oscillators. Take m1 = 1 kg, m2 = 2 kg,
k1 = 3 N/m, and k2 = 2 N/m.
(a) Write differential equations for the three

positions, find the normal modes of the
system, and write the general solution.
(This will require finding the eigenval-
ues and eigenvectors of a 3 × 3 matrix.
That’s normally cumbersome but in
this case the characteristic equation
includes one expression that you can
easily factor out of every term.)

(b) One of the normal modes represents a
motion in which you pull all three balls
to the right (or left), pulling the mid-
dle one twice as far as the outer two,
and then let go. They will then oscillate
that way forever, always moving to the
right and left together, with the mid-
dle one oscillating with twice as large
an amplitude as the other two. Using
that description as a guide, write simi-
lar descriptions for what the other two
normal modes physically represent.

6.227 The image below shows four cou-
pled oscillators. Take k = 6 N/m, m1 =
3 kg, and m2 = 2 kg.

You should be able to write down their
equations of motion and solve them to
find the normal modes (with a computer
to help you find eigenvectors and eigen-
values), but in this problem we want to
focus on the physical interpretation instead,
so we’re just going to give the eigenvec-
tors of the transformation matrix.
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The first of these eigenvectors describes a
normal mode in which you pull all four balls
to the right (or left), pulling the middle
two slightly farther than the outer two, and
then let go. They will then oscillate that way
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forever, always moving to the right and left
together, but with the middle ones oscillat-
ing with a larger amplitude than the outer
two. Using that description as a guide, write
similar descriptions for what the other three
eigenvectors physically represent.

6.228 Two tanks contain a mixture of water and
frobscottle. Let A and B be the amounts of
frobscottle in each tank, and assume the tanks
are well mixed so the concentration is uniform
throughout each tank (but may be different in
the two tanks). Throughout the problem we
will measure all amounts in millions of gallons.
In those units each tank has a volume of 1.
Pipes carry fluid back and forth between each
tank, and away from the second tank into
the river. Clean water is pumped into the
first tank to keep the volume constant.

A B

R1 R3

R2

Water

Note that A and B represent amounts
of frobscottle in each tank, while the
R variables represents rates at which
mixed amounts of water and frobscot-
tle are pumped out of the tanks.
(a) Assuming the volume in each tank

remains constant, express R3 in
terms of R1 and R2.

(b) Write a pair of coupled differential
equations for A and B.

(c) Find the normal modes of the system.
(d) Let R1 = 9, R2 = 4, A(0) = 3, and

B(0) = 3. Solve for A(t) and B(t).
(e) Both of the normal modes you found

should be valid mathematical solutions
to the equations, and you showed in the
previous part that you can make physical
solutions out of combinations of them,
but it is not physically possible for the sys-
tem to be entirely in one of the normal
modes. Which one, and why not?
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6.229 The picture below shows a circuit with
inductors and resistors.

L L
A

B

R1 R1R2

I3 I2I1

(a) The total current entering any given
point must equal the total current
leaving that point. Use that fact to
write I3 in terms of I1 and I2.

(b) The voltage drop across a resistor is
IR , where I is the current through the
resistor. The voltage drop across an
inductor is (dI∕dt)L. Write equations
that express the fact that the voltage
drop from A to B is the same whether
you go along the left, middle, or right
path. Rearrange your answers to get a
pair of coupled differential equations
for dI1∕dt and dI2∕dt in terms of
I1 and I2.

(c) Find the normal modes of the system.
(d) In one of the normal modes the current

on both sides of the circuit is equal, so
at some point in time a current I is flow-
ing in one direction (up or down) on
the left, an equal current I is flowing in
that same direction on the right, and a
current 2I is flowing the opposite way in
the middle. All of these currents die off
exponentially, with the outer two always
equal and the middle one always twice
as large and opposite in direction. Using
this description as a guide, describe the
physical state represented by the other
normal mode.

(e) Let L = 10−7 H, R1 = 20 Ω, and R2 = 10 Ω,
and assume that initially I1 = 3 A and
I2 = 2 A. Find I1(t) and I2(t).

6.230 Exploration: A Quantum Mechanical Well.
Many quantum mechanics problems start
by solving Schrödinger’s equation:

− ℏ2

2m
d2𝜓
dx2

+ V (x)𝜓 = E𝜓

The potential function V (x) is specified
in the problem (just as classical dynamics
problems begin by specifying a force). In
this problem you will solve Schrödinger’s

equation for the potential function:

V =
⎧⎪⎨⎪⎩
V0 x < 0
0 0 ≤ x ≤ a
V0 x > a

where m, ℏ, V0, a and E are positive con-
stants, and (this is very important) E < V0.
The value of 𝜓 is generally complex, but in
this problem make all your solutions real. The
boundary condition is that lim

x→±∞
𝜓(x) = 0.

(a) Begin by writing and solving Schrödinger’s
equation in the rightmost region. Your
general solution will have two arbitrary
constants, but the boundary condition at
x → ∞ will eliminate one of them.

(b) Repeat Part (a) for the leftmost
region. Once again, your final solution
will have only one arbitrary constant
(but not the same arbitrary constant
as in the first solution).

(c) Write and solve Schrödinger’s equation
in the middle region. This time you will
be left with two arbitrary constants.

You now have four arbitrary constants:
one on the left, one on the right, and two
in the middle. But now we introduce a
postulate of quantum mechanics: both
𝜓(x) and d𝜓∕dx must be continuous. So
𝜓(a) calculated from Part (a) must agree
with 𝜓(a) calculated from Part (c) and
so on.
(d) The requirement of continuity

imposes four different restrictions,
two on each boundary. Write the
equations that represent those restric-
tions. Hint: you can save some writ-
ing if you define two new constants:
𝛼 =

√
2m(V0 − E)∕ℏ and 𝛽 =

√
2mE∕ℏ.

(e) You should now have four homogeneous
linear equations for four arbitrary con-
stants. One solution is the trivial one
where they are all zero, but that can’t rep-
resent a physical state, so the only possible
physical states are ones for which there
are other solutions. Write an equation that
must be satisfied in order for those non-
trivial solutions to exist. This will require
taking a 4 × 4 determinant, but it will
have enough zeros in it that expansion
by minors will not be too time-consuming
to do by hand. Simplify the equation
as much as possible (leaving it in terms
of 𝛼 and 𝛽). This equation describes
the physically possible energies E for a
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particle in a finite potential well, although
it cannot be analytically solved for E .

(f) At what step would your answers
first have begun to look different if
E were greater than V0?

6.231 [This problem depends on Problem 6.230.]
The mass of an electron is 9.1 × 10−31 kg
and the constant ℏ is 6.63 × 10−34 J⋅s. Con-
sider an electron in a potential well with
V0 = 10−18 J and a = 10−8 m.
(a) Write the function f (E) that must equal 0

at a physically allowed value of the energy.
(b) Plot that function from E = 0 to E = V0.

How many allowed values of energy are
there for the electron in this well?

(c) Numerically find the value of the low-
est allowed energy. (It must be positive.)
Using these numbers your answer will
come out in Joules. Convert them to the
more standard particle physics energy unit
of “electron volts”: 1 eV = 1.6 × 10−19 J.

6.232 Exploration: Google PageRank
One of the techniques Google uses to select
search results is “PageRank,” invented by
Google founders Sergey Brin and Larry Page
(for whom it is named).9 The basic idea is that
each web page is given a rank based on what
other pages link to it. The higher a page’s rank
is, the more rank it confers on other pages that
it links to. To illustrate how the system works,
consider the following web of four pages.

A B

C D

Initially each page is given a ranking of
1 over the number of pages, so in this case
they each start with 1∕4. In each iteration,
each page distributes its current rank equally
among all the other pages that it links to. For
example, page A links to pages B and C, so
it gives them each half of its current rank, or
1/8. Page C only links to page B, so it gives
its entire current rank to B. After the first
iteration, page B has a new rank of 3∕8, the
sum of the ranks it inherited from A and C.
(It doesn’t matter if page A links to page
B once or twenty times; the algorithm only
counts whether one page links to another. It
also ignores any links from a page to itself.)

(a) Write the column vector 𝐫1 represent-
ing the rankings of the four pages after
one iteration. Write the vector 𝐫2 giving
their rankings after two iterations.

(b) Write the matrix 𝐋 that you mul-
tiply by 𝐫i to get 𝐫i+1.

(c) In the limit of infinitely many itera-
tions, you approach a vector 𝐫 that is
no longer changing. From this you
can conclude that 𝐫 is an eigenvector
of 𝐋. What is its eigenvalue?

(d) Find the solution 𝐫 for this particular web.
PageRank has a simple interpretation.

If a user starts on a random page and ran-
domly follows links, the rank of a given page
after i iterations is the probability that he
will be on that page after following i links.
In practice, however, users sometimes jump
to a new random page rather than follow-
ing links. If d is the probability of a user
following a link, and 1 − d is the probabil-
ity of the user jumping to a new random
page, then the probability of landing on the
nth page after i iterations is given by:

ri(n) =
1 − d
N

+ d
N∑
m=1

ri−1(m)Lmn

Here ri(n) is the rank of page n after i iter-
ations, and N is the total number of pages.
That may sound complicated, but it’s just
what you did above. If a page links to seven
other pages, then each iteration it gives 1∕7
of its rank to each of those pages. The dif-
ference is that now it gives d∕7 of its rank
to each of those pages, and each page also
receives a rank (1 − d)∕N for the chance
that the user jumped to that page randomly
instead of following a link. This formula can
be written in matrix form, using 𝟏 for a col-
umn matrix where all the entries are 1.

𝐫i =
(1 − d

N

)
𝟏 + d 𝐋 𝐫i−1 (6.10.1)

The probability d is called the “damping
factor.”
(e) Show that in the case d = 1

Equation 6.10.1 reduces to the simpler
formula you were using above. What
assumption does d = 1 represent?

(f) Once again the steady-state solution is
the one where 𝐫 doesn’t change from
one iteration to the next. Write a matrix

9Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30, 1–7 (April 1998), 107–117.
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equation for 𝐫 and solve it. (In this part
you’re considering a general web, not
the particular four-page example given
above.) Big hint: Solving for 𝐫 will require
bringing both the 𝐫 terms to one side of
the equation. To combine those two terms
you’ll need to insert an identity matrix 𝐈
in front of one of them. Finally, to get 𝐫
by itself you’ll multiply both sides by the
inverse of the matrix that multiplies it.

(g) What would you expect the rankings to
approach in the limit d → 0 and why?
What would you expect them to approach
in the limit d → 1 and why?

6.233 [This problem depends on Problem 6.232.]
Unless otherwise specified, everything
in this problem refers to the four-page
web given in Problem 6.232.
(a) Find the solution 𝐫 for the four-page

web given above, using a damping factor
d = 0.85 (which is the value recom-
mended by Brin and Page). How
do the numbers look different from
the undamped solution you found
above, and why do these differences
make sense in light of your answers
to Part (g) of Problem 6.232?

(b) Using the simple algorithm with no damp-
ing factor, calculate the first 100 iterations
of 𝐫i . Make a plot showing each of the
four ranks as a function of i. For refer-
ence, put horizontal lines on your plot
representing the steady-state values 𝐫.

(c) Repeat Part (b) using a damping factor
d = 0.5. (The horizontal lines in this plot
should reflect the damped solution.)

(d) Calculate the steady-state solution 𝐫 for
100 values of d from 0 to 1. (You may find
it easier to include values close to 1, but
not d = 1 itself.) Make a plot showing the
steady-state solution for each of the four
ranks as a function of d. Explain what your
plot looks like and why it makes sense.

6.234 Exploration: Cramer’s Rule
Cramer’s rule is a method for solving n lin-
ear equations with n unknowns.

𝐌𝐱 = 𝐛 (6.10.2)

Here 𝐱 is a column vector made up of
the unknowns x1, x2, etc., and 𝐌 and 𝐛
are a square matrix and a column matrix
respectively. Let 𝐍𝐢 be a matrix formed

by replacing the ith column of 𝐌 with 𝐛.
Cramer’s rule says xi = |𝐍i|∕|𝐌|.
(a) Use Cramer’s rule to solve the equations

x1 + 2x2 = 3, 2x1 − x2 = −1. Verify
that your answers work.

In the rest of the problem you’ll show
why Cramer’s rule works. For definite-
ness, we’ll let 𝐌 be 3 × 3 and we’ll derive
Cramer’s rule for finding x2.
(b) If 𝐌−1 is the inverse of 𝐌, what is 𝐌−1

times the first column of 𝐌? Your answer
should be a column vector.

(c) Multiply both sides of Equation 6.10.2 on
the left with 𝐌−1 to find 𝐌−1𝐛. Once again
your answer should be a column vector.

(d) Using your previous answers, what
is 𝐌−1𝐍2? Your answer, of course,
should be a square matrix.

(e) Take the determinant of the square matrix
you just wrote. Write your answer as an
equation: |𝐌−1𝐍2| equals such-and-such.

(f) Rewrite the equation you just wrote to
derive Cramer’s rule for this specific
case. Explicitly state what properties
of determinants you are using.

6.235 In Section 6.6 we asserted that only square
matrices can be inverted.
(a) The definition of an inverse matrix

requires that 𝐀𝐀−1 = 𝐈 and 𝐀−1𝐀 = 𝐈.
Explain why it’s only possible for both of
these to be valid if 𝐀 is a square matrix.

To see why this result makes sense we’ll con-
sider two non-square matrix transformations.
(b) As our first example, suppose you

have 3 molecules of water (H2O),
2 molecules of hydrogen peroxide
(H2O2), and 4 molecules of hydro-
gen (H2). How many atoms of hydro-
gen and oxygen do you have?

(c) Continuing with that example, now
suppose you have 8 atoms of hydro-
gen and 4 atoms of oxygen. Write two
possibilities for how many of each of
those molecules you might have.

(d) Write a matrix for converting from
molecules of water, hydrogen peroxide,
and hydrogen to atoms of hydrogen and
oxygen. Explain using your answer to
Part (c) why this matrix can’t be inverted.

(e) As our second example let’s say you
have 2 molecules of glucose (C6H12O6)
and 3 molecules of ethanol (C2H6O).10

10We really don’t want to know what you have them for.
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How many atoms of carbon, hydro-
gen, and oxygen do you have?

(f) Now suppose you have 12 atoms each of
carbon, hydrogen, and oxygen. Prove that
no combination of these two molecules
can account for those numbers of atoms.
This is true even if you allow fractional
and negative numbers of molecules.
Hint: set this up as a set of equations for
the number of atoms as a function of G
and E , the numbers of molecules.

(g) Write a matrix for converting from
molecules of glucose and ethanol to
atoms of carbon, hydrogen, and oxygen.
Explain using your answer to Part (f)
why this matrix can’t be inverted.

(h) Explain in general why 2 × 3 and 3 × 2
matrices can’t be inverted. Your answer
should not be in terms of equations,
but of the kinds of transformations
these perform. Note that the answer
is different for 2 × 3 and 3 × 2.


