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10.9 Reduction of Order and Variation
of Parameters
“Reduction of Order” and “Variation of Parameters” are two different formulas that can be
used to find solutions to a differential equation based on other known solutions.

10.9.1 Discovery Exercise: Reduction of Order

Consider the equation

x2y′′(x) − (2x2 + x)y′(x) + (x2 + x)y(x) = 0 (10.9.1)

1. Confirm that y1 = ex is a solution to this equation.
2. The second solution is harder to guess, but you can make it easier by writing it in the

form y2 = u(x)y1(x), where y1 is the solution we just gave you and u(x) is an unknown
function. Plug this into the differential equation to get a differential equation for u(x).
Simplify your answer as much as possible.

See Check Yourself #67 in Appendix L

3. Your equation for u should have u′′ and u′ in it, but not u by itself. Make the substitu-
tion v = u′ to get a first-order differential equation for v.

4. Solve the equation you wrote for v(x) and use that to find u(x).
5. Write the general solution to Equation 10.9.1. Plug it in and verify that it works.

The technique you just used is called “reduction of order.” When you have one solution
y1 to a linear, second-order ODE , the guess y2 = uy1 will give you a first-order ODE to solve
for u′. This is one of two techniques you will learn about in this section.

10.9.2 Explanation: Reduction of Order and Variation of
Parameters

Given a linear, inhomogeneous, second-order8 differential equation, you can solve it if you
can do the following three steps (as discussed in Section 10.2).

1. Find two linearly independent functions that solve the complementary homogeneous
equation. Here we will call these functions yc1(x) and yc2(x).

2. Find a particular solution to the original inhomogeneous equation. We will refer to
this solution as yp(x).

3. The general solution you are looking for is the sum of the particular and complemen-
tary solutions: yp(x) + C1yc1(x) + C2yc2(x).

“Reduction of order” helps with Step 1: it assumes you have found one solution to the com-
plementary equation, and it gives you a way to find a second. “Variation of parameters” can
take care of Step 2: it assumes you have already found both linearly independent solutions to
the homogeneous equation, and it gives you a way to get from those to a particular solution
of the inhomogeneous equation.

8In this section we are focusing on second-order equations but the methods can be generalized to higher orders.
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Reduction of Order
A linear second-order homogeneous differential equation should have two linearly inde-
pendent solutions. Reduction of Order is a formula that starts with one of these solution
and finds the second. If you did the Discovery Exercise (Section 10.9.1) you’ve used this
approach on one particular equation. You start with one solution yc1 and write the second
one in the form yc2 = u(x)yc1(x). When you plug this into the differential equation you get a
first-order differential equation for u′, which you can solve by separation of variables.

In Problem 10.182 you’ll apply this technique to a generic second-order linear ODE. The
result is the following formula.

Reduction of Order

Given a second-order homogeneous differential equation y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0, and
given one solution yc1(x), a second solution is given by:

yc2 = uyc1 (10.9.2)

where u is a function that satisfies the equation:

ln(u′) = −∫
(
2
y′c1
yc1

+ a1

)
dx (10.9.3)

These formulas come with the same warning as several other techniques in this chapter: make sure
to write your differential equation in the form given above, which includes having no factor in front
of y′′(x).

Equation 10.9.3 gives you the function u′(x). There is no guarantee that you can inte-
grate that to find the function you need. (Sorry: no technique is perfect.) But if you can,
Equation 10.9.2 then gives you the second solution you need to find the general solution.

In the example below we use reduction of order to derive a result that we pulled out of
a hat in Section 10.2: the second solution to a Cauchy-Euler equation with only one power
solution.

EXAMPLE Reduction of Order

Question: Solve the equation x2y′′ − 5xy′ + 9y = 0.

Solution:

The decreasing powers of x suggest the guess xk .

y = xk → y′ = kxk−1 → y′′ = k(k − 1)xk−2

Plug this into the differential equation.

k(k − 1)xk − 5kxk + 9xk = 0 → k2 − 6k + 9 = 0 → k = 3

So y = x3 is one valid solution. But because the quadratic equation for k had a double
root, we don’t have a second solution. That’s where reduction of order comes in. We
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begin by writing the differential equation in the proper form—that is, make sure
there is no coefficient in front of the y′′ term.

y′′ − 5
x
y′ + 9

x2
y = 0

Now we plug yc1 = x3 and a1 = −5∕x into Equation 10.9.3.

ln(u′) = −∫
(
2
(3x2)
x3

− 5
x

)
dx

ln(u′) = −∫
1
x
dx = − ln x = ln

(
x−1

)

u′ = 1
x

u = ln x

So the second solution to this equation (from Equation 10.9.2) is yc2 = x3 ln x. Note
that we did not need arbitrary constants in our integration; we will put them into our
general solution.

y = Ax3 + Bx3 ln x

You can (and should) plug this solution back into the original differential equation
and verify that it works.

Variation of Parameters
Variation of Parameters is a formula for finding a particular solution to an inhomogeneous
differential equation, based on two (already found) solutions to the complementary homo-
geneous equation.

Variation of Parameters

Given a second-order differential equation y′′(x) + a1(x)y′(x) + a0(x)y(x) = f (x), and given two
linearly independent solutions yc1 and yc2 to the complementary homogeneous equation
y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0, a particular solution to the inhomogeneous equation is given by:

yp(x) = uyc1 + vyc2 (10.9.4)

where u and v are functions that satisfy the equations:

u′ =
yc2

y′c1yc2 − yc1y
′
c2

f (x)

v′ =
−yc1

y′c1yc2 − yc1y
′
c2

f (x)
(10.9.5)

These formulas come with the same warning as several other techniques in this chapter: make sure
to write your differential equation in the form given above, which includes having no factor in front
of y′′(x).

Equations 10.9.5 give you the functions u′(x) and v′(x). There is no guarantee that
you can integrate those to find the functions you need. (Sound familiar?) But if you
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can, Equation 10.9.4 then gives you a particular solution, which you combine with your
already-found complementary solutions to find the general solution.

Below we will give an example demonstrating the process, and then show where the for-
mula comes from.

EXAMPLE Variation of Parameters

Question: Solve the equation x2
(
d2y∕dx2

)
− 2y = ln x.

Solution:

We start by rewriting this in the correct form, which means dividing by x2 so the
coefficient of y′′(x) is one. That leaves y′′(x) − (2∕x2)y = (ln x)∕x2, so f (x) = (ln x)∕x2.

Next we solve the complementary homogeneous equation y′′(x) − (2∕x2)y = 0,
which we will attack by plugging in the guess y = xk .

k(k − 1)xk − 2xk = 0 → (k2 − k − 2)xk = 0 → k = −1 or k = 2

So our two homogeneous solutions are:

yc1 =
1
x

and yc2 = x2

These are the solutions to the complementary homogeneous equation, and we will
need them when we write our general solution. But now we are going to plug them
into Equations 10.9.5 to find the new functions u and v that we need for our
particular solution.

u′ = x2

−(1∕x2)x2 − (1∕x)(2x)
ln x
x2

= −1
3
ln x

v′ = −
1∕x

−(1∕x2)x2 − (1∕x)(2x)
ln x
x2

= 1
3
ln x
x3

These can be integrated by parts to give

u = 1
3
x − 1

3
x ln x

v = − 1
12x2

− 1
6x2

ln x

(You do not need to include +C because we are not looking for a general solution;
any particular solution will do.) Equation 10.9.4 tells us how to put those together to
find a particular solution to our equation: yp(x) = uyc1 + vyc2. After a bit of algebra,
this gives

yp(x) =
1
4
− 1

2
ln x

Remember that the general solution is a sum of the particular and homogeneous
solutions!

y(x) = 1
4
− 1

2
ln x +

C1

x
+ C2x

2

We leave it to you to confirm that this solves the original equation. (Go on, it’s good
for you.)
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Where Did That “Variation of Parameters” Formula Come From?
A linear second-order differential equation can be written in the form:

d2y

dx2
+ a1(x)

dy
dx

+ a0(x)y = f (x) (10.9.6)

You might think that we’re going to start there and derive Equation 10.9.4, but that isn’t the
plan: we’re going to treat Equation 10.9.4 as a guess, plug it in, and end up at Equation 10.9.5.
As always, the guess justifies itself when it works.

So we begin with our guess and take some derivatives. (This involves a few product rules,
but also some clever grouping.) Remember as we go that we are starting with yc1 and yc2
(the already-found solutions to the complementary homogeneous equation) and looking for
u and v.

yp(x) = uyc1 + vyc2
y′p(x) = u′yc1 + uy′c1 + v′yc2 + vy′c2

= uy′c1 + vy′c2 + (u′yc1 + v′yc2)
y′′p (x) = u′y′c1 + uy′′c1 + v′y′c2 + vy′′c2 + (u′yc1 + v′yc2)′

= uy′′c1 + vy′′c2 + (u′y′c1 + v′y′c2) + (u′yc1 + v′yc2)′

Plugging all that into Equation 10.9.6,

uy′′c1 + vy′′c2 + (u′y′c1 + v′y′c2) + (u′yc1 + v′yc2)′ + a1[uy′c1 + vy′c2 + (u′yc1 + v′yc2)]
+ a0(uyc1 + vyc2) = f (x)

Rearranging:

u(y′′c1 + a1y
′
c1 + a0yc1) + v(y′′c2 + a1y

′
c2 + a0yc2) + a1(u′yc1 + v′yc2) + (u′y′c1 + v′y′c2) + (u′yc1

+ v′yc2)′ = f (x)

Now comes the good part. yc1 is a solution to the complementary homogeneous equation,
which means by definition that y′′c1 + a1y

′
c1 + a0yc1 = 0. Similarly of course for yc2. So both of

the first terms go away, leaving this.

a1(u′yc1 + v′yc2) + (u′y′c1 + v′y′c2) + (u′yc1 + v′yc2)′ = f (x) (10.9.7)

You might think we’re going to keep manipulating until we end up with u=<something> but
that is not possible, because there is not just one unique solution. And we don’t need one:
we only need one particular solution, or in other words, anything that works. The easiest way
to make Equation 10.9.7 work is to choose u and v such that:

u′yc1 + v′yc2 = 0
u′y′c1 + v′y′c2 = f (x)

These are now algebra equations, which you can easily solve for u′ and v′ to arrive at
Equation 10.9.5.
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10.9.3 Problems: Reduction of Order and Variation
of Parameters

10.177 Walk-Through: Reduction of Order. In
this problem you will solve the equation
x4y′′ + (x + x3)y′ − (1 + x2)y = 0.
(a) Show that yc1 = x is one valid solution.
(b) Rewrite this equation in the form

y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0.
Identify the functions a1(x) and
a0(x).

(c) Use Equation 10.9.3 to find the
function u(x).

(d) Use Equation 10.9.2 to find the second
solution yc2(x) to this equation.

(e) Verify that your yc2(x) is a valid solu-
tion to this differential equation.

(f) Write the general solution to this
differential equation.

10.178 In Section 10.2 we discussed the equation
y′′ + 6y′ + 9y = 0. The guess y = ekx leads
to one solution, y = e−3x . We then sug-
gested trying y = xe−3x , but gave no indi-
cation of where this second solution came
from. Use reduction of order to find this
second solution for yourself.

10.179 In Section 10.2 we discussed the equation
x2y′′ + 5xy′ + 4y = 0. The guess y = xk leads
to one solution, y = 1∕x2. We then sug-
gested trying y = (ln x)∕x2, but gave no
indication of where this second solution
came from. Use reduction of order to find
this second solution for yourself.

10.180 One solution to the equation
xy′′ + (3 − 2x)y′ + (x − 3)y = 0 is y = ex .
Find a second solution that is linearly
independent of the first.

10.181 Find the general solution to the equation
x3y′′ + (x2 + x)y′ − (x + 1)y = 0. You will need
to begin by playing around until you find
one simple solution that works. Reduction
of order will then give you the second solu-
tion. The last step of finding u(x) involves
a tricky integral, but you can evaluate it
by parts.

10.182 In this problem you will derive the for-
mula for reduction of order. Remember
the scenario: an existing solution yc1(x)
has been found, and you are now looking
for a second solution by guessing yc2(x) =
u(x)yc1(x). The goal is to find the unknown
function u(x).

(a) Begin by plugging the function yc2 =
uyc1 into the differential equation
y′′(x) + a1(x)y′(x) + a0(x)y(x) = 0. (This
will involve a few product rules.) Write
your answer in the form

u′′<something> + u′<something>
+u<something> = 0

(b) Explain why the u<something> must
be zero, and can therefore be ignored.
Hint: remember what yc1 stands for.

(c) The resulting differential equation con-
tains u′ and u′′ but no u. As we saw in
Section 10.8 this suggests the substitution
v = u′. Write the resulting first-order dif-
ferential equation for v(x). (This is where
“reduction of order” gets its name.)

(d) The resulting differential equation is sep-
arable. Solve for v(x). If all goes well, you
should end up deriving Equation 10.9.3.

10.183 Consider the differential equation
y′′′(x) = y(x).
(a) This equation has one relatively obvi-

ous solution (beside y(x) = 0). Write
it down and call it yc1(x).

(b) To find the other two solutions, begin by
substituting y2(x) = u(x)yc1(x) into the dif-
ferential equation, using the yc1(x) you
found in Part (a). Write the resulting
third-order differential equation for u(x).

(c) Convert the third-order equation
for u into a second-order equation
for v = u′ and solve it. Then use
your solution to find u.

(d) Write the general solution to
y′′′(x) = y(x).

10.184 Walk-Through: Variation of Parame-

ters. In this problem you will solve the
equation (sin x)

[
y′′(x) + y(x)

]
= 1.

(a) Rewrite this equation in the form
y′′(x) + a1(x)y′(x) + a0(x)y(x) = f (x). Iden-
tify the functions a1(x), a0(x), and f (x).

(b) Write the complementary homoge-
neous equation. Find two linearly inde-
pendent solutions. (We hope you can
see them both just by looking.)

(c) Calling the two functions you wrote
in Part (b) yc1(x) and yc2(x), plug
them into Equation 10.9.5 so you



7in x 10in Felder c10_online.tex V3 - January 21, 2015 10:51 A.M. Page 39

10.9 |Reduction of Order and Variation of Parameters 39

have two equations for the func-
tions u′(x) and v′(x).

(d) Integrate your answers to find u(x)
and v(x). You should be able to do
both integrals by hand.

(e) Use Equation 10.9.4 to put your solutions
together into a particular solution.

(f) Put your answers together to write the
general solution to the original differ-
ential equation. Your solution should
include two arbitrary constants C1 and C2.

(g) Verify that your solution works.

In Problems 10.185–10.187 solve the given equation
by variation of parameters. You may find it helpful to
first work through Problem 10.184 as a model.

10.185 y′′ − 10y′ + 25y = e5x∕x2

10.186 y′′ − 4y′ = 8ekx (where k is a constant)

10.187 2y′′ − 5y′ + 2y = e4x

Problems 10.188–10.192 have four parts each.

∙ Write the complementary homogeneous
equation. In some cases we will give you a
solution yc1 to this equation; if we don’t,
play around a bit until you find one.

∙ Use reduction of order to find the other solution
yc2 to the complementary homogeneous equation.

∙ Use variation of parameters to find a particular
solution yp to the original equation.

∙ Write the general solution to the original
equation.

10.188 y′′(x) + (3 tan x)y′(x) − 2y(x) = cos4 x.
Begin with yc1 = sin x.

10.189 (x − 1)y′′(x) − xy′(x) + y(x) = (x − 1)2.
Begin with yc1 = ex .

10.190 xy′′(x) − (2x + 1)y′(x) + (x + 1)y(x) = x2

10.191 y′′(x) + (tan x − (2∕x)) y′(x) −(
tan(x)∕x − (2∕x2)

)
y(x) = x cos x.

Begin with yc1 = x.

10.192 y′′(x) − (2 cot x + 1)y′(x) + (1 + cot x +
2 cot2 x)y(x) = sin x. Begin with yc1 = sin x.

10.193 Variation of parameters tells you the deriva-
tives u′(x) and v′(x), but you have to integrate
to find the functions u and v. Since those
are indefinite integrals, they should nor-
mally include arbitrary constants. Recall,
however, that the general solution you
get is y(x) = uyc1 + vyc2 + C1yc1 + C2yc2,
where C1 and C2 are arbitrary con-
stants. Explain why, if you add arbitrary

constants to u and v, it doesn’t change this
solution.

10.194 In this section we have focused on second-
order differential equations, but varia-
tion of parameters can be used for lin-
ear equations of any order. In this prob-
lem you will derive and use the formula
for the first-order equation:

dy
dx

+ a0y = f (x) (10.9.8)

You will be looking for a solution of
the form yp = u(x)yc(x) where u is an
unknown function and yc is a solution
to the complementary homogeneous
equation.
(a) Find y′p by the product rule. Then plug

yp and y′p into Equation 10.9.8.
(b) Collect the terms that have u in

them, and factor out the u.
(c) The resulting terms in parentheses

add up to zero, and can be dropped.
Why?

(d) Solve the remaining equation for
u′(x). This is the equation you
have been looking for.

(e) Use your formula to solve the following
equation.

dy
dx

+
(3
x

)
y = 1

x4 + 5

(You will begin by solving the com-
plementary homogeneous equation
by separation of variables.)

10.195 A 1 kg block is attached to a spring with
spring constant 12 N/m and damping
force Fd = −bv, b = 7 N⋅s/m. The block
is acted on by an external force Fe .
(a) Write the differential equation for

the position of the block, x(t).
(b) Find the complementary solu-

tions to this equation.
(c) Use variation of parameters to find

a particular solution. Your answer
will include integrals of the unknown
function Fe (t).

(d) Using your result from Part (c), find
the particular solution xp(t) for each
of the following driving forces.
i. Fe = 5 N
ii. Fe = aet∕𝜏 , with a = 2 N and 𝜏 = 2 s
iii. Fe = atet∕𝜏 with a = 3 N/s and 𝜏 = 2 s
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10.196 The charge on the capacitor in an RLC cir-
cuit obeys the equation Q ′′(t) + 6Q ′(t) +
5Q (t) = V ′(t), where V (t) is the volt-
age at the voltage source.
(a) Find the complementary solu-

tions to this equation.
(b) Use variation of parameters to find

a particular solution. Your answer
will include integrals involving the
unknown function V ′(t).

(c) Using your result from Part (c), find
the particular solution Qp(t) for each of
the following driving forces. (Be care-
ful to use V ′(t) and not V (t) in your
formulas.)

i. V = 5
ii. V = e2t

iii. V = tet

10.197 In Chapter 11 we will solve for the motion
of a string of length L held fixed at both
ends and subjected to a uniform, time-
dependent external driving force. We will
reduce that problem to solving the follow-
ing differential equation in which byn(t) is

the function we are solving for, a(t) repre-
sents the time dependence of the external
force, and n, L, and v are constants.16

−n2
𝜋
2

L2
byn(t) −

1
v2

d2byn(t)
dt2

= 4
n𝜋

a(t)

(a) Find the complementary solutions
to this ODE for byn(t).

(b) Use variation of parameters to find a
particular solution. Your answer will
include integrals with the unknown
function a(t) in them.

(c) Find a particular solution byn(t) for
a(t) = k (a constant external force).

(d) Find a particular solution byn(t) for a(t) =
t (a linearly increasing external force).

10.198 [This problem depends on Problem 10.197.]
In Problem 10.197 you found the Fourier
coefficients for the motion of a vibrat-
ing string subject to an external driving
force a(t). In this problem, use a computer
to find a particular solution for byn(t) for
the external force law: a(t) = sin t.

16Some physical background you don’t need for this problem: byn(t) is the nth Fourier coefficient of the shape of
the string y(x) at time t, for odd n only. For even n the Fourier coefficients obey the same equation but with 0 on
the right-hand side.


