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10.5 Exact Differential Equations
In this section we will encounter differential equations written in the unfamiliar looking form
P dx + Q dy = 0. In the specific case where 𝜕P∕𝜕y = 𝜕Q∕𝜕x this is called an “exact differential
equation” and has a simple solution.

This section relies on your prior understanding of differentials, as discussed in Chapter 4.

10.5.1 Discovery Exercise: Exact Differential Equations

The buoyancy B of a hot air balloon is a function of the temperature T of the air inside the
balloon and the volume V of the balloon.

1. If the air temperature changes while the volume stays constant, the resulting change
in buoyancy is given by:

dB = 𝜕B
𝜕T

dT

Explain why. Your explanation should focus on the meaning of that partial derivative.
2. If the volume changes while the air temperature stays constant, what is the resulting

change in buoyancy?
3. If the temperature and volume both change, what is the total resulting change in

buoyancy?

10.5.2 Explanation: Exact Differential Equations

The following, believe it or not, is a differential equation.

3x2y dx + x3 dy = 0 (10.5.1)

This section will answer two questions about that equation and others like it.

∙ What on Earth does that even mean?
∙ And oh yeah, how do I solve it?

One way to answer both questions is to rearrange the terms into a more familiar-looking
form.

dy
dx

=
−3x2y
x3

(10.5.2)

We all know what that means, and how to solve it. Mathematically it’s perfectly valid to turn
Equation 10.5.1 into Equation 10.5.2. But for reasons we will explain soon, we want instead
to take Equation 10.5.1 on its own terms.

How to Read (and Solve) a Funny-Looking Equation Like That One

Equation 10.5.1 presents a relationship between x and y, but we’re going to introduce a new
variable f that depends on both x and y. What happens to f if you change x by a small
amount dx and change y by a small amount dy? Such a “total differential” is found by using
partial derivatives. (Partial derivatives, and equations such as the following, are explained in
Chapter 4.)

df =
(
𝜕f
𝜕x

)
dx +

(
𝜕f
𝜕y

)
dy

That’s starting to look a bit like Equation 10.5.1. And if we happen to choose f (x, y) = x3y,
then it looks a lot like Equation 10.5.1. With that insight we are ready to address the two
questions that started us off.
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∙ What does Equation 10.5.1 mean? It means that if we change x by a small amount dx,
and change y by a small amount dy, then the function f (x, y) = x3y will not change at
all: its df will be zero.

∙ And how do we solve it? If df = 0 then f must be a constant, and it doesn’t matter what
constant. So we write x3y = C and we have the general solution, arbitrary constant
and all.

EXAMPLE Verifying a Solution to an Exact Differential
Equation

Problem:

We said above that x3y = C is the solution to Equation 10.5.1. Verify this solution.

Solution:

Let’s pretend for the moment that x and y are both functions of a third variable—we
will call it t and think of it as time, but it could be anything. Now take the derivative of
both sides of the solution with respect to time. (Remember that C is not a function,
but a constant.)

x3y = C

3x2 dx
dt
y + x3

dy
dt

= 0

Multiply both sides by dt and you have the differential equation we set out to solve.
You can think about this result geometrically. For any given value of C the equation

x3y = C traces out a curve. (These are called the “level curves” of the function x3y.) If
you start at the point (x, y) and take a small step along the curve, your dy is related to
your dx by the equation of the curve. The differential equation defines that family of
curves by saying how dy and dx are related at each point (x, y).

Of course we can rewrite that solution as y = C∕x3. You can verify that this is a valid solution
to Equation 10.5.2 (or you can solve Equation 10.5.2 by separating variables and verify that
you end up with C∕x3). But the method we are presenting does not depend on being able to
solve for y; it is a more general technique than that, and we present it now in general form.

Exact Differential Equations: First Definition, and Solution

The equation:
P (x, y) dx + Q (x, y) dy = 0 (10.5.3)

is an “exact differential equation” if there exists a function f (x, y) such that

𝜕f ∕𝜕x = P and 𝜕f ∕𝜕y = Q (10.5.4)

In that case, the general solution is:
f (x, y) = C



7in x 10in Felder c10_online.tex V3 - January 21, 2015 10:51 A.M. Page 20

20 Chapter 10 Methods of Solving Ordinary Differential Equations (Online)

Youmay still be wondering why we prefer this new, abstract formulation to the more famil-
iar approach represented by Equation 10.5.2. One reason is that many differential equations
can’t easily be solved in the form dy∕dx =<something>. If we write an equation in the form of
Equation 10.5.3 it’s easy to check if it is exact and solve it if it is, as we’ll explain below.
Another reason is that exact differential equations are not limited to two variables. You
can solve P (x, y, z) dx + Q (x, y, z) dy + R(x, y, z) dz = 0 with the same approach, but you cannot
write it in terms of a simple derivative of x, y, or z. Such equations come up in applications
where differentials play an important role, and it is important to understand and be able to
work with them. (We discuss the role of such equations in thermodynamics in Section 4.10:
see felderbooks.com.)

How Do You Know If Your Equation is Exact?

Here’s a different definition of “exact.”

Exact Differential Equations: Second (Equivalent) Definition

Equation 10.5.3 represents an exact differential equation if and only if:

𝜕P
𝜕y

=
𝜕Q
𝜕x

(10.5.5)

You can verify this quickly on the example we gave above. The function P = 3x2y so
𝜕P∕𝜕y = 3x2. And Q = x3 so 𝜕Q∕𝜕x = 3x2. Because the two come out the same, we know the
equation is exact.

Some textbooks use Equation 10.5.4 as a definition of exact (as we have), and others use
Equation 10.5.5. We will show below that the two definitions are equivalent, but first let’s talk
about why it is useful to have both.

You start with a problem in the form of Equation 10.5.3: that is, you are given the functions
P (x, y), and Q (x, y). Equation 10.5.4 tells us that they define an exact differential equation if
“there exists a function f (x, y) such that…” If you can find such a function, you have the
whole problem solved. But how do you know if such a function exists or not?

By contrast, Equation 10.5.5 gives you an easy method based only on the given P and Q
to determine if a given equation is exact. But even if it is, it doesn’t give you any hint of the
solution.

So a common approach is to begin with Equation 10.5.5. If 𝜕P∕𝜕y and 𝜕Q∕𝜕x are not
equal, then the equation is not exact, and you must move on to other methods. If they are
equal, then you integrate to find the function f that you know must exist, and that will give
you the solution. We discuss later in the section how to generalize this rule to equations with
more than two variables.

How Do You Solve an Exact Differential Equation?

The example below illustrates the method we just discussed. First we use Equation 10.5.5
to check that the equation is exact. Once we know that, our goal is to solve the equations
𝜕f ∕𝜕x = P and 𝜕f ∕𝜕y = Q—a process that is easier to demonstrate (below) than to explain
(here).
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EXAMPLE Exact Differential Equation

Question: Solve this differential equation.

2x ln y dx +
(
x2

y
+ 6e2y

)
dy = 0

Solution:

We begin by determining if this is an exact equation, based on Equation 10.5.5.

P (x, y) = 2x ln y, so 𝜕P
𝜕y

= 2x
y

Q (x, y) = x2

y
+ 6e2y, so

𝜕Q
𝜕x

= 2x
y

Because the two answers are equal, this is an exact differential equation. We now set
out to find the function f that Equation 10.5.4 promises.
We begin with 𝜕f ∕𝜕x = 2x ln y. This means that f could be x2 ln y, but it doesn’t

have to be exactly that. If we add any constant to that function, or any pure function
of y, then 𝜕f ∕𝜕x will remain unchanged. So we write

f (x, y) = x2 ln y + g (y)

Based on that equation, 𝜕f ∕𝜕y = x2∕y + g ′(y). But 𝜕f ∕𝜕y must be Q , which in this case
is x2∕y + 6e2y. So we see that g ′(y) = 6e2y, meaning g (y) = 3e2y.
We have now found that f (x, y) = x2 ln y + 3e2y has the appropriate partial

derivatives. The solution to our differential equation is therefore:

x2 ln y + 3e2y = C

(When we integrated g ′(y) to get g (y) we could have included +C , but it would have
gotten absorbed in the arbitrary constant we set f equal to anyway.)

If themiddle step in that examplemade you suspect that our original differential equation
was carefully contrived, you’re absolutely right. What if the coefficient of dy had not looked
like x2∕y plus a pure function of y? That would mean the original equation was not exact. It
would have failed the 𝜕P∕𝜕y = 𝜕Q∕𝜕x test, and no f (x, y) function could be found.

We’ve given two completely different definitions of “exact.” Why are they the
same?

Equation 10.5.4 tells us there exists a function f (x, y) such that 𝜕f ∕𝜕x = P . Take the derivative
of both sides of that equation with respect to y and you get this.

𝜕2f
𝜕y𝜕x

= 𝜕P
𝜕y

Similarly, you can start with 𝜕f ∕𝜕y = Q and take the derivative of both sides of that equation
with respect to x.

𝜕2f
𝜕x𝜕y

=
𝜕Q
𝜕x
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Since partial derivatives commute, those two quantities must be equal, so Equation 10.5.4
leads us to Equation 10.5.5.

If you’re familiar with vector calculus, we can reframe everything we have said more con-
cisely. Equation 10.5.3 is exact if P (x, y)î + Q (x, y)ĵ represents a conservative vector field. (See
Section 8.11.) Recall that a vector field V⃗ is conservative if there exists a function f such that
V⃗ = ∇⃗f , which is what Equation 10.5.4 says. We also know that V⃗ is conservative if and only
if ∇⃗ × V⃗ = 0⃗, which is what Equation 10.5.5 says.

This interpretation also suggests the way to generalize Equation 10.5.5 to three-variable
equations.

Exact Differential Equations: Three-Variable Definition

The equation P (x, y, z)dx + Q (x, y, z)dy + R(x, y, z)dz = 0 is exact if and only if V⃗ = P î + Qĵ + Rk̂
represents a conservative vector field: in other words, if ∇⃗ × V⃗ = 0⃗.

The curl operator is not defined in more than three dimensions, however, so for four or
more variables just use the brute force method. See Problems 10.92–10.93.

Integrating Factors

Recall from Section 10.4 that we sometimes multiply both sides of a differential equation
by the same thing—an “integrating factor.” One use of this technique is to make an exact
equation where there was none.

EXAMPLE Integrating Factor

Problem:

Solve the equation 3y dx + x(2y + 1) dy = 0

Solution:

As given, the equation is not exact. (𝜕P∕𝜕y ≠ 𝜕Q∕𝜕x.) You can try multiplying both
sides of the equation by x, and it’s still not exact. Try a few other things. (Go ahead,
we’ll wait.)
Now we’ll multiply both sides of the equation by x2e2y.
3x2ye2y dx + x3e2y(2y + 1) dy = 0
Ta-da! 𝜕P∕𝜕y is now the same as 𝜕Q∕𝜕x. With a bit more work (as in the previous

example) you can solve it.
x3ye2y = C

We know that is the solution because if f (x, y) = x3ye2y then 𝜕f ∕𝜕x = 3x2ye2y and
𝜕f ∕𝜕y = x3e2y(2y + 1). You should confirm, however, that this also solves the original
differential equation.

We hope you can easily confirm for yourself that the original equation in that example
was not exact, that multiplying by x would not have made it exact, and that multiplying by
x2e2y did. But none of that suggests how you can come up with integrating factors on your
own. There is no general answer to that question, but there is a formula you can use in some
cases.
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The Integrating Factor to Make an Exact Differential Equation

Given an equation that is in the form of Equation 10.5.3 but is not exact, you want to find an inte-
grating factor I that will make it exact. If such a factor exists that is a function of x and not of y,
then it is:

I (x) = e∫
[
1
Q

(
𝜕P
𝜕y −

𝜕Q
𝜕x

)]
dx (10.5.6)

If a factor exists that is a function of y and not of x, then it is:

I (y) = e∫
[
1
P

(
𝜕Q
𝜕x − 𝜕P

𝜕y

)]
dy (10.5.7)

Inmany cases—such as the example we worked above—the integrating factor is a function
of both x and y, in which case those formulas won’t help. But a formula that works sometimes
is better than no formula at all.
These formulas follow from Equation 10.5.5. In general, an integrating factor I (x, y)

makes a differential equation exact if:

𝜕

𝜕y
(IP ) = 𝜕

𝜕x
(IQ )

Applying the product rule turns this into:

I 𝜕P
𝜕y

+ P 𝜕I
𝜕y

= I
𝜕Q
𝜕x

+ Q 𝜕I
𝜕x

If it happens that I is a function of x only, then 𝜕I∕𝜕y = 0. Dropping that term, dividing both
sides by QI , and rearranging leads to:

1
I

(dI
dx

)
= 1

Q

(
𝜕P
𝜕y

−
𝜕Q
𝜕x

)

The left side of this equation is the derivative with respect to x of (ln I ), so integrating
both sides and then exponentiating leads to Equation 10.5.6. A similar argument leads to
Equation 10.5.7 for integrating factors that only depend on y. (See Problem 10.101.)

EXAMPLE Finding an Integrating Factor

Problem:

Solve the equation 2xy sin y dx + x2y cos y dy = 0

Solution:

The equation as given is not exact. Applying Equation 10.5.6 we begin with:

1
Q

(
𝜕P
𝜕y

−
𝜕Q
𝜕x

)
= 1

x2y cos y

(
2x sin y + 2xy cos y − 2xy cos y

)
It looks promising, with most of the terms in the parentheses canceling, but there’s a
problem. When you simplify this, you’re going to end up with a function of both x
and y. Integrating with respect to x, and exponentiating, is not going to make those
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“y”s go away. Equation 10.5.6 only gives us a useful integrating factor if it gives us a
function of x only, so this won’t help. (You can finish integrating and exponentiating
this, but you’ll find that it doesn’t make the differential equation exact.)
Let’s see if Equation 10.5.7 works out any better.

1
P

(
𝜕Q
𝜕x

− 𝜕P
𝜕y

)
= 1
2xy sin y

(
2xy cos y − 2x sin y − 2xy cos y

)
That’s more like it! That simplifies to −1∕y; ∫ (−1∕y)dy = − ln y, so e− ln y = 1∕y is the
integrating factor. This turns our original equation into:

2x sin y dx + x2 cos y dy = 0

which is exact, as promised. The solution is x2 sin y = C .

10.5.3 Problems: Exact Differential Equations

10.80 Walk-Through: Exact ODE. 2 cos(2x +
y) dx +

(
cos(2x + y) + 3 sin y

)
dy = 0

(a) This problem is in the form of
Equation 10.5.3. What are the func-
tions P (x, y) and Q (x, y)?

(b) Use Equation 10.5.5 to show that this
is an exact differential equation.

(c) Because this is an exact differential
equation, there must exist a func-
tion f (x, y) such that 𝜕f ∕𝜕x = P and
𝜕f ∕𝜕y = Q . To begin finding it, write
down the general solution to the
equation 𝜕f ∕𝜕x = P for the P (x, y)
that you wrote above. Note that your
solution at this stage will involve an
arbitrary function g (y).

(d) Take the partial derivative with respect
to y of the f (x, y) function you wrote
in Part (c). Set the result equal to your
Q (x, y) function and solve to find g (y).

(e) Write the function f (x, y) and confirm
that it fulfills Equation 10.5.4.

(f) Write the solution to the differ-
ential equation.

(g) Assuming that x and y are both func-
tions of t, verify that your answer solves
the original differential equation.

10.81 [This problem depends on Problem 10.80.]
Rewrite the differential equation in
Problem 10.80 in the form dy∕dx = <some
function of x and y>. Show that your final
solution to Problem 10.80 is a valid solu-
tion to this differential equation.

In Problems 10.82–10.88 determine if the given
differential equation is exact or not. If it is, solve it.
You may find it helpful to first work through
Problem 10.80 as a model.

10.82 x dx + y dy = 0

10.83 y dx + x dy = 0

10.84 y dx − x dy = 0

10.85 (6x + 6xy + 10y) dx + (3x2 + 10x + 14y) dy = 0

10.86 (10x + 3y + 8) dx + (4x + 4y) dy = 0

10.87
y

(x + y)2
dx − x

(x + y)2
dy = 0

10.88

(
x√
x2 − y

+ 2x

)
dx −

(
1

2
√
x2 − y

+ 2y

)
dy = 0

10.89 In special relativity the length of an object
is given by the formula L = L0

√
1 − v2∕c2

where L0 is the “rest length” of the object,
v is its speed, and c, the speed of light, is a
constant.
(a) If the rest length of the object

increases by a small dL0, calcu-
late the resulting change dL in the
length.

(b) If the object increases its speed by
a small dv, calculate the resulting
change dL in the length.

(c) Write a differential equation that says
“Both L0 and v increased by small
amounts in such a way that there was
no net change in the length.” Your
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differential equation should be in
the form of Equation 10.5.3.

(d) Solve your differential equation.

10.90 A light source of strength S is shining on an
object x meters away. You have measured that
when you increase the strength of the source
the illumination of the object increases
according to 𝜕I∕𝜕S = k∕x2, where k is a posi-
tive constant. You’ve also measured that when
you move the object farther from the source
the illumination deceases: 𝜕I∕𝜕x = −2kS∕x3.
Write and solve a differential equation of
the form <something>dS+<something>dx = 0
that says “Both S and x increased by small
amounts in such a way that there was no
net change in the illumination.”

10.91 Measurements of the electric field in a region
give E⃗ = (−2xe−x2−y2 + 1)î − 2ye−x2−y2 ĵ. The
electric potential V is related to the electric
field by 𝜕V ∕𝜕x = −Ex and 𝜕V ∕𝜕y = −Ey.
Find V (x, y), up to an arbitrary additive
constant.

10.92 In this problem you’ll solve the equation
y dx + (x + 2y sin z)dy + y2 cos(z)dz = 0.
(a) To check that this equation is exact,

define a vector V⃗ = yî + (x + 2y sin z)ĵ +
y2 cos(z)k̂ and show that ∇⃗ × V⃗ = 0⃗.

(b) Since the equation is exact there must
be a function f (x, y, z) such that ∇⃗f =
V⃗ . To find that function, first solve
𝜕f ∕𝜕x = y. Your answer should con-
tain an arbitrary function g (y, z).

(c) Using your answer to Part (b), calcu-
late 𝜕f ∕𝜕y and set it equal to x + 2y sin z.
By solving the resulting equation
you should be able to find f up to
an arbitrary function h(z).

(d) Finally, set 𝜕f ∕𝜕z = y2 cos z and solve to
find f up to an arbitrary constant.

(e) Write the solution to the differen-
tial equation in the form f = C ,
where C is the (only) arbitrary con-
stant in the solution.

10.93 With four or more variables, you can’t use
the curl to test if a differential equation
is exact, so you simply have to start try-
ing to solve it and see if it works. Consider
two differential equations that we will call
D1 and D2.

D1 ∶ (yzt + ez)dx + xzt dy + (xyt + xez)dz
+(xyz + 2t) dt = 0

D2 ∶ (yzt + ez)dx + xzt dy + (xyt + ez)dz
+(xyz + 2t) dt = 0

Show that one of them is not exact. Show
that the other one is exact, and solve it.

10.94 In this problem you will solve the
equation y dx + 2 tan x dy = 0 by using
an integrating factor.
(a) Show that the equation as given

is not exact.
(b) Multiply both sides of the

equation by y cos x.
(c) Show that the resulting equation

is exact, and solve it.

10.95 In this problem you will solve the following
equation by using an integrating factor.

3y2 + 2y
x

dx + (xy2 − 3y) dy = 0

(a) Show that the equation as given
is not exact.

(b) Multiply both sides of the
equation by 1∕(xy).

(c) Show that the resulting equation
is exact, and solve it.

In Problems 10.96–10.99 use Equations 10.5.6 and
10.5.7 to find an appropriate integrating factor and
solve the equation.

10.96 dx + 2x cos y dy = 0

10.97 ex+2ydx +
(
2 + 2∕y

)
ex+2ydy = 0

10.98 2xy dx + 3x2 dy = 0

10.99
2 ln(x2 + y)

x
dx +

ln(x2 + y)
x2

dy = 0

10.100 P (x, y)dx + Q (x, y)dy = 0 is an exact differ-
ential equation with solution f (x, y) = C .
Is P (x, y)dx + (Q (x, y) + 7)dy = 0 also an
exact differential equation? If not, why
not? If so, what is the solution?

10.101 Show that if an integrating factor exists
that is a function of y only, it must be
given by Equation 10.5.7.

10.102 The “thermodynamic identity” for a gas
in a sealed container (constant number of
molecules) relates the change in internal
energy U of the gas to changes in its entropy
S and volume V : dU = T dS − P dV where T
and P are the temperature and pressure of
the gas. For a monatomic ideal gas these are
given by

T = C
V 2∕3 e

(2∕3)S∕(NkB ), P =
CNkB
V 5∕3 e

(2∕3)S∕(NkB )

The constants N and kB are the number
of molecules and Boltzmann’s constant,
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and C is a another constant that depends
on N . Starting from the thermodynamic
identity, derive a relationship between
S and V that must hold for an ideal gas
undergoing a process at constant internal
energy. (If you know enough thermody-
namics there are easier ways to derive this.
You could do that to check yourself, but
for this problem you should derive it by
setting dU = 0 and solving the resulting
equation.)

10.103 The “thermodynamic identity” for a gas
relates the change in internal energy U
of the gas to changes in its entropy S,
volume V , and number of molecules N :
dU = TdS − PdV + 𝜇dN . T , P , and 𝜇 are
the temperature, pressure, and “chemi-
cal potential” of the gas. For a monatomic
ideal gas these are given by

T = h2N 2∕3

2𝜋e5∕3mkBV 2∕3 e
(2∕3)S∕(NkB )

P = h2N 5∕3

2𝜋e5∕3mV 5∕3 e
(2∕3)S∕(NkB )

𝜇 = −
(

S
NkB

− 5
2

)
h2N 2∕3

2𝜋e5∕3mV 2∕3 e
(2∕3)S∕(NkB )

Here m is the mass of a molecule, h is
Planck’s constant, and kB is Boltzmann’s
constant. Starting from the thermodynamic
identity, derive a relationship between S,
V , and N that must hold for an ideal gas
undergoing a process at constant internal
energy. (If you know enough thermody-
namics there are easier ways to derive this.
You could do that to check yourself, but for
this problem you should derive it by setting
dU = 0 and solving the resulting equation.)
Hint: rather than taking the curl, it’s eas-
ier in this case to just look for a function
that has the right partial derivatives.

10.104 You are in charge of the production line
at Spacely Sprockets. Mr. Spacely has told

you to increase production, but he refuses
to increase your budget. You decide to
accomplish this by putting less metal in each
sprocket. Let C be your total cost, S be the
number of sprockets you produce, andM be
the grams of metal in each sprocket. Taking
into account the grams of metal per sprocket
M and the discounts you get for bulk buying,
𝜕C∕𝜕S = M (S + 10)∕

√
(S + 10)2 − 100 and

𝜕C∕𝜕M =
√
(S + 10)2 − 100. Find an

equation relating S and M that will
keep your total costs fixed.

10.105 You’re conducting experiments on a flat
table. The experiment produces vary-
ing amounts of heat in different places,
and a series of measurements tells you
that 𝜕T∕𝜕x = ey and 𝜕T∕𝜕y = xey. Sketch
the isotherms (curves of constant tem-
perature) on the surface.

10.106 You’re conducting experiments on a
flat table. The experiment produces vary-
ing amounts of heat in different places,
and a series of measurements tells you
that 𝜕T∕𝜕x = sin(y2 + x) + x cos(y2 + x) and
𝜕T∕𝜕y = 2xy cos(y2 + x). Sketch the isotherms
(curves of constant temperature) on the
surface.

10.107 Make Your Own.

(a) Write an exact differential equation
that isn’t in this section (includ-
ing the problems) and solve it
using the techniques from this
section.

(b) Write a differential equation that is not
exact, but that can be made exact by mul-
tiplying both sides by y∕(ln x). Hint: This
is very easy once you have done Part (a).

(c) Find a function Q (x, y) to make
sin(x + 2y) dx + Q (x, y) dy = 0
an exact differential
equation.


