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1.8 Differential Equations on a Computer
Some students consider computer use “cheating” in some mathematical sense, and believe
that Real Scientists find all their solutions by hand. Other students rely too heavily on com-
puters, believing they don’t need to learn how to solve equations on their own.
Practical scientists use computers as a tool to solve problems efficiently. They know when

and how to use them, and what to do with the answers they get. They also know when to rely
on their own understanding of the math.
This section will introduce some of the ways computers can handle differential equations.

It will not discuss specific commands or syntax, because we don’t know what computer pro-
gram(s) you happen to be using. We’re introducing the concepts here, but you will need to
learn how to use a particular program, either from your class or from other resources.

1.8.1 Discovery Exercise: Differential Equations on a Computer

1. Go to http://www.wolframalpha.com.
2. Type the following:

solve dy/dx = e^x / sqrt(ky)

3. Note that the program shows you your question, written in standard mathematical
notation, so you can make sure it interpreted your question correctly. The program
also gives you solutions. Test one solution to confirm that it solves the differential
equation.

4. Type the following:

solve dy/dx = y/(1-x^3)

5. Once again, the program gives you a solution. Perhaps you’d better take its word for
this one.

6. Choose three other differential equations, ranging from easy ones that you know how
to solve to more complicated ones that you don’t. Record your questions and the solu-
tions. If you try one that the computer can’t solve just try a different one instead. If you
get an answer that includes a function you’ve never heard of, that’s fine. We’ll discuss
in the section below what to do with answers like that.

1.8.2 Explanation: Differential Equations on a Computer

If you spend the rest of your life studying methods of solving ordinary differential equations,
it’s unlikely you will get better at it than computers are now. You ask the computer to solve
dy∕dx + y = exy2 and it takes less than a second to identify “Riccati’s equation” and offer the
general solution y = e−x∕(C − x). (You can check it; it works.) After you’ve had this experi-
ence a couple of times, you will never want to go back to a world in which people looked up
differential equations in huge tables.
On the other hand, don’t worry that computers are going to take your engineering job.

Human beings are still needed to turn real-world problems into differential equations in the
first place, and human beings are needed to interpret the results of those equations. The
middle step, handling the differential equation, is where computers excel.
One way computers can help is by finding an “analytical solution”: a function with the

requisite number of arbitrary constants that makes the differential equation true. In the
above example the computer solved Riccati’s equation; you can now easily plug in an initial
condition to find a specific function.
Unfortunately, some solutions can only be expressed as integrals or as infinite series,

and may be quite difficult to work with. Worse still, you often can’t find any analytical solu-
tion, even with a computer! That doesn’t mean there’s anything wrong with the differential
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equation. It presumably still has a solution for any given set of initial conditions;6 you sim-
ply can’t write that solution in terms of known functions. In such cases, you can often find
practical answers by asking the computer for a “numerical solution.”
You are already familiar with one numerical technique, which is solving an integral by

doing a Riemann sum. (This is how many calculators find integrals, which is why they know
that ∫ 2

1 2x dx = 3 but may not know that ∫ 2x dx = x2 + C .) A Riemann sum allows you to
evaluate any definite integral to any desired degree of accuracy, without clever tricks or sym-
bolic manipulation, but with dozens (or thousands) of computations, so it is ideally suited to
a computer.
What does it mean to approach a differential equation numerically? Consider that a first-

order differential equation tells you how much a function is changing at any given point.
So once you have an initial condition, the differential equation tells you how the function
will move up or down from that (known) point until you reach another (unknown) point.
When you ask a computer to numerically solve a differential equation it generally uses some
variation of this method, repeated many times over tiny intervals. We illustrate the use of
numerical solutions below, and you will learn one such technique by hand in Problem 1.177.
Analytically or numerically, computers can be tremendously helpful in many different

situations, once you learn to use them properly. The three examples below illustrate some
of the situations you may run into, and some of the ways you may choose to handle them.

EXAMPLE Mass Drivers

Problem:
Centauri Prime won its war with rival planet Narn by hurling rocks from space. The
rocks fell toward Narn under the influence of the planet’s gravity, obeying Newton’s
law of universal gravitation F = Gm1m2∕r2. Assume the mass and radius of Narn are
comparable to those of the Earth, but that Narn’s atmosphere exerts negligible drag.
If a rock starts at rest 100,000 km from the center of Narn, how long will it take to
strike the planet’s surface?

100,000 km

6This is not guaranteed mathematically, but for real systems it can often be justified on physical grounds.
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Solution:
The first step, of course, is setting up the equation. Using F = ma and plugging in
appropriate constants leads you to the equation of motion:

d2x
dt2

= − k
x2

(1.8.1)

where k = 4 × 1014m3∕s2. So now you plug that equation into a computer, sit back,
and wait for it to solve all your problems! The bad news comes almost immediately:
the computer can’t find a function that happens to satisfy that particular differential
equation. (This usually means there isn’t one.) The analytical approach fails in
this case.
This problem is ideal for a numerical solution, however. You need to look up the

syntax for solving differential equations numerically on your computer system.
Whatever system you are using you will need to tell the computer that:

∙ d2x∕dt2 = −4 × 1014∕x2, and
∙ x(0) = 108, and
∙ x′(0) = 0

The computer generates a list of numbers representing x at different times t. You can
make a plot of this function to see where it crosses the line x = 6 × 106 (the radius of
the planet) or you can use other computer functions to find that value for you. The
answer you get is roughly t = 55, 000. Since you put everything in SI units this value is
in seconds, so as a last step you can divide it by 3600 to get the somewhat more useful
answer t ≈ 15 hours.

EXAMPLE An analytical solution that doesn’t help

Problem:
A physical quantity is described by the equation:

ds
dt

= s3 − 2s2 − s + 2

What are the possible long-term behaviors of the system?

Solution:
Unlike the previous example, this can be approached analytically, provided you
happen to notice that the expression on the right can be factored. You separate
variables, rewrite the left side using partial fractions, integrate, use the laws of logs,
and simplify cleverly, and you arrive at (s + 1)(s − 2)2∕(s − 1)3 = Ce6t . Now it’s time to
solve that for s … and at this point, let’s say you start over and throw the problem at a
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computer. It comes back almost immediately with an analytical answer:

3

√√
e6(C+t)

(
e6(C+t) − 1

)
3 − 2e6(C+t) + e12(C+t) + 1

e6(C+t) − 1
− 1

3

√√
e6(C+t)

(
e6(C+t) − 1

)
3 − 2e6(C+t) + e12(C+t) + 1

+ 1

That solution, seeded with different values of C , represents every possible function
that this quantity could follow, and therefore contains all the information about the
long-term behaviors of this quantity.7 It’s easy to look at that solution and in mere
minutes conclude that you no longer care about the long-term behaviors of this
quantity and might prefer to go into dentistry. A better solution (not to imply
anything wrong with dentistry) is to ask the computer to draw a slope field.

‒3 ‒2 ‒1 0 1 2 3
‒2

‒1

0

1

2

3

4

t

s

The solution is now clear. If s starts between −1 and 2 it will asymptotically
approach s = 1. If it starts above 2 or below −1 it will rise or fall (respectively) without
bound. The computer can draw the slope field that tells you this, but you have to
figure out that a slope field will be more useful than an analytic solution for this
situation. You might wonder how we knew that drawing the slope field in the range
−2 ≤ y ≤ 4 would show us all the possible behaviors. You can try to figure this out with
trial and error, but a more surefire method is to start by finding the equilibria. Recall
that these are points where ds∕dt = 0, so you can have a computer tell you that −1, 1,
and 2 are the roots of s3 − 2s2 − s + 2. Then you know that any range that includes
those three points will be sufficient.

7Actually, it’s a bit worse than that because this is one of three solutions to this equation. If you include all
possible values of C in all three solutions then you have all the possible behaviors of s(t). Remember that for
non-linear equations a solution with enough arbitrary constants isn’t guaranteed to be the general solution.
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EXAMPLE An analytical solution with unknown functions

Problem:
A function is known to obey the differential equation:

x2
d2y

dx2
+ x

dy
dx

+ (x2 − 9)y = 0 (x ≥ 0)

where y(0) = 0. It is important to know for what other x-values this function equals
zero. (This function represents an important class of equations that come up in
mechanics, quantum mechanics, and probability. You’ll explore some of its
applications in the problems.)

Solution:
When you hand this differential equation to a computer, it comes back with
something like this.

y(x) = C1J3(x) + C2Y3(x)

Huh?
We arrive now at one of the most important rules for using computer math systems:

when in doubt, look for help! Look at the built-in help resources of your computer math
program, or search online. It doesn’t take long to find that J3(x) and Y3(x) are “Bessel
functions.” Don’t be put off if you’ve never heard of one; look at a few graphs or
properties and see if you can find the answers you need. In this case, J3(0) = 0 and
Y3(0) is undefined; since our problem stipulated that y(0) = 0, we must have C2 = 0,
leaving y(x) = C1J3(x).
Now, what about those zeros? Poking around a bit more, we find that J3 has an

infinite number of zeros. The first few are roughly 6.38, 9.76, and 13. Most computer
math systems have a built-in function for generating as many of them as you need.

Analytical and Numerical Approaches
“Analytical” and “numerical” represent two very different approaches to problems involving
differential equations. The computer can help with both approaches, but it cannot suggest
which one you should use, so it’s worth taking a moment to contrast them.
Disadvantages of analytical solutions include the following:

∙ Sometimes they are very messy.
∙ Sometimes they don’t exist at all.
∙ Sometimes the answer you’re looking for is just one simple number (“How long can
the reactor run before all the fuel is exhausted?”) and an analytical solution makes you
work much harder to get it.

Disadvantages of numerical solutions include the following:

∙ To find a numerical solution you must specify initial and/or boundary conditions;
there is no such thing as a general numerical solution to a differential equation. If
you want to know the solution for different sets of initial conditions you have to find a
separate numerical solution for each one.

∙ Similarly, all constants in your equations must be given numerical values. If you want
to know how long it will take for a lunar lander to touch down on the surface of the
moon youmight find a numerical answer, but if you want to find an answer that applies
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to landing on other moons or planets, or uses a different fuel burn rate or different
size lander, you have to solve the equation again from scratch.

In cases where an analytical solution doesn’t exist and you want to describe all the possible
behaviors of your system, you have two main options. The first is to approach the prob-
lem graphically, using either slope fields (as described in this chapter) or phase portraits
(described in Chapter 10). The second option is to approximate the differential equation
with one that describes your system reasonably well, but which can be solved analytically. We
discuss this method in Chapter 2.

Stepping Back
You can take entire courses or read volumes on computer approaches to differential
equations, and this section is no substitute for all that time—or for the time you need to
spend familiarizing yourself with the abilities and quirks of your particular software. Our
main point here has been that a computer is an invaluable tool, but it is not a permission
slip to turn off your brain; on the contrary, using the computer properly can require as
much thinking and understanding as solving problems by hand.
But you should also be aware that knowing how to use the computer is quite different

from knowing what it is doing “under the covers.” Problem 1.177 walks you through an
example of a numerical technique called Euler’s method. Euler’s method turns out to have
a lot of drawbacks; modern software tends to use more complicated algorithms that are based
on Euler’s method but provide more accurate answers more quickly. But when you walk
through even our brief introduction to that method, you get a beginning sense of what
numerical solutions are about. If you find yourself having to program your own solutions
(which is more common than you might suppose), you will need to learn the appropriate
numerical recipes.8 As obvious as this sounds, it’s important to remember that the computer
is not doing anything magic; it is doing the calculations that someone programmed it to
do, and you can understand all those calculations even though you could never do so many
so quickly.

1.8.3 Problems: Differential Equations on a Computer

Nearly all of the problems in this section require a
computer. Whatever software you are using, remember that
the first important skill is using the built-in help resources to
identify the specific syntax required to solve these kinds of
problems!

For any problem in this section where you find an answer
numerically or by looking at a plot, you should give an
answer that is accurate to at least two significant figures.
In Problems 1.159–1.163 you will be given a
differential equation, a set of initial conditions, and a
final time. Solve the equation numerically, plot the
solution, and find the value of y(tf ).

1.159 dy∕dt = t3 − y3, y(0) = 1∕10, tf = 2

1.160 d2y∕dt2 = −y3, y(0) = 1∕10, y′(0) = 0, tf = 2

1.161 d2y∕dt2 = − sin(y), y(0) = 0, y′(0) = 1, tf = 2𝜋

1.162 d2y∕dt2 + (dy∕dt)2 + y = 1, y(0) = 0,
y′(0) = 0, tf = 5

1.163 d3y∕dt3 = −y2, y(0) = 0, y′(0) = 0,
y′′(0) = .2, tf = 2

1.164 For the differential equation f ′′(x) =
−(1∕x)f (x) with boundary condition f (0) = 0
how many times does the solution cross the
x-axis in the range 0 < x < 100? Notice that
x = 0 is not included in this range, so you
shouldn’t count the initial condition at the
origin as one of the axis crossings. (Hint:
Because this is a second-order equation with
only one boundary condition the solution will
have an arbitrary constant in it. You should
still be able to answer this question.)

8For a wonderful introduction to many types of computer algorithms for numerical calculations see Numerical
Recipes: The Art of Scientific Computing by Press, et. al.
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1.165 For the differential equation y′′(x) + xy′(x) +
y(x) = 0 with initial conditions y(0) = 0,
y′(0) = 1, the solution rises to a maximum,
then falls, and then decreases toward
zero. Find the value of x where this solu-
tion reaches its maximum value.

1.166 For the differential equation y′′(x) + y′(x) +
xy(x) = 0 with initial conditions y(0) = 0,
y′(0) = 1, find the first positive value of x at
which the solution y(x) equals zero.

1.167 Important Quantity I follows the differential
equation dI∕dt = I 4 − 6I 3 + 9I 2 − 4I .
(a) Have a computer find the solutions to

the equation I 4 − 6I 3 + 9I 2 − 4I = 0.
Explain how you know that those solu-
tions are the equilibrium values of I .

(b) Have a computer generate a slope
field with a range of values for I
that includes all the equilibrium val-
ues you found in Part (a).

(c) Using this slope field, predict the long-
term behavior of I . Your answer will
consist of several different statements
of the form “If I starts in this range,
then it will head toward…”

1.168 Find all the equilibrium values of the differen-
tial equation dx∕dt = 4x4 − 4x3 − 4x2 + 4x and
classify each one as stable, unstable, or neither.

1.169 Consider the differential equation y′(t) = sin y.
(a) Have a computer solve this

equation analytically.
(b) Based on your solution, what is

lim
t→∞

y(t) if y(0) = 𝜋∕2?
(c) What are the equilibrium values for

this equation? Hint: There are an
infinite number of them.

(d) Draw a slope field for this equation.
You can do this by hand or with a com-
puter. Your graph should show at least
three equilibrium values.

(e) Make sure your slope field confirms
your answer to Part (b) and then use
it to find lim

t→∞
y(t) if y(0) = −𝜋∕2.

1.170 Consider y′(t) =
√
y − y2

(a) Have a computer solve this analytically.
Verify that the solution works.

(b) Draw a slope field for this equation
for 0 ≤ y ≤ 1. (Why did we have to
restrict it to that range?)

(c) You may have found that the analytic solu-
tion and slope field seem to predict very
different behavior. Explain. Hint: when

you verified the analytic solution, what
assumptions did you have to make?

(d) Describe the long-term behavior of
y(t) if y(0) = 0. This is a trick question
because there is more than one pos-
sible answer. Give at least two. This is
an example of the general fact that
non-linear equations don’t always
have a unique solution for each initial
condition.

(e) Describe the long-term behavior of
y(t) if y(0) = 1∕2. There is only one
answer for this condition.

1.171 An asteroid is detected heading straight
toward Earth at 25 km/s. When it is
first detected it is 500,000 km from
the center of the Earth.
(a) How long will it take to reach the sur-

face of the Earth? (Hint: You can find all
the information you need in the “mass
drivers” example on Page 11. Be careful
to convert all units to SI before enter-
ing equations on a computer.)

(b) How long would it take an asteroid to
reach the surface of Jupiter if were mov-
ing straight toward it at 25 km/s starting
500,000 km from the center of Jupiter?
(Hint: The constant k in Equation 1.8.1 is
the universal constant G times the mass of
the planet, so you can calculate its value
for Jupiter by looking up G and the mass
of Jupiter. You will also need to look up the
radius of Jupiter to solve the problem.)

1.172 [This problem does not require a computer.] In the
example on Page 14 we solved the equation

x2
d2y
dx2

+ x
dy
dx

+ (x2 − 9)y = 0 (x ≥ 0)

with the boundary condition y(0) = 0. Explain
why we could have arrived at the same solu-
tion if all we had specified was that y(0)
must be finite. Using similar logic, explain
why you cannot solve this equation with
the boundary condition y(0) = 1.

1.173 A circular drumhead of radius R can have
circular standing waves whose amplitude
as a function of distance from the center
A(𝜌) obeys the differential equation

A′′(𝜌) + 1
𝜌
A′(𝜌) + k2A(𝜌) = 0 (1.8.2)

where k is a constant related to the fre-
quency of the wave. The boundary condi-
tions for this equation are that the edges
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of the drum are clamped down, meaning
A(R) = 0, and that A(0) must be finite.

(a) Find the general solution to this dif-
ferential equation. The result should
be two special functions, each multi-
plied by an arbitrary constant.

(b) Using the condition that A(0) must be
finite explain why one of the two arbi-
trary constants in your solution must
be zero. Write the resulting solution
with one arbitrary constant.

(c) The condition that A(R) = 0 does not
restrict your other arbitrary constant.
Instead it restricts the possible values of
k. By looking up the values at which the
function you found equals zero, find the
first three possible values of k for which
the condition A(R) = 0 can be satisfied
for a drum of radius R = 0.1 m.

(d) The frequency f is related to k by f =
kv∕(2𝜋), where v is the speed of sound
on the drumhead (which depends on its
tension). For a drumhead of radius 0.1
m with sound speed v = 100 m/s find
the first three possible frequencies for
circular waves. As a check on your work
your answer should come out in units of
1/s, otherwise known as Hertz (Hz).

(Drums can also have waves with more
complicated shapes. We’ll consider the
general solution for a vibrating drum-
head in Chapter 11.)

1.174 [This problem depends on Problem 1.173.] A cir-
cular wave on a drumhead is described by the
solution you found in Problem 1.173 multi-
plied by cos(2𝜋ft), where f is the frequency
you found at the end. Using the third value
of k you found and the corresponding value
of f , make a series of nine plots similar to
the one at the beginning of Problem 1.173,
each plot showing the drumhead at a differ-
ent time. Your final plot should be at the time
when it returns to its original shape. (If your
program can make animations you can do a
single animation instead of the sequence of

nine plots.) Use 0.2 for your arbitrary constant
(which gives the amplitude of the wave).

1.175 In quantum mechanics a particle is described
by a “wavefunction” 𝜓 that tells you the
probabilities of finding the particle in dif-
ferent places. For a particle in a spheri-
cal region with no forces acting on it the
wavefunction obeys the equation

d2𝜓
dr 2

+ 2
r
d𝜓
dr

−
(
l(l + 1)

r 2
− 1

)
𝜓(r ) = 0

where l is an integer related to the par-
ticle’s angular momentum and the dis-
tance from the origin r is expressed in
units that allow you to eliminate all other
constants from the problem.
(a) Find the general solution for 𝜓(r ).
(b) Using the condition that 𝜓(0) must be

finite, set one of the arbitrary constants
in your general solution to zero and
write the remaining solution.

(c) The values of r where 𝜓(r ) = 0 indi-
cate radii where there is zero chance
of finding the particle. Find the first
such non-zero radius for the three
cases l = 0, l = 1, and l = 2.

1.176 Superman’s enemy Lex Luthor is holding a
block of kryptonite, which is deadly to Super-
man. Superman is attempting to reach Luthor,
but the closer he gets to the kryptonite the
slower he moves. Assume his velocity is given
by v = −vsx∕(d + x) where vs and d are con-
stants and x is Superman’s distance from the
kryptonite.
(a) Sketch the function v(x) and describe

what happens to Superman’s speed
when he is very far from the kryptonite
and when he is very close.

(b) Try to solve this differential equation
by hand using separation of variables
to find the function x(t). Explain
why this doesn’t work.

(c) Assume Superman’s normal speed when
he is far away from kryptonite is 1000
m/s (faster than a speeding bullet) and
that his speed drops to half that value
when he is 20 m from the kryptonite.
Find the values of vs and d and solve
for x(t) numerically assuming he starts
100 m away. If he needs to get within
1 meter of the kryptonite before he
can reach it and get rid of it, how long
will that take him? (Be careful with
signs!)
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1.177 Exploration: Euler’s Method By Hand [This
problem does not require a computer.]
The simplest technique for numerically
solving differential equations is “Euler’s
method.” In this problem, you will use
Euler’s method to answer the question: If
dy∕dx = y and y(0) = 1, what is y(1)?
This problem asks us to follow the function

from x = 0 to x = 1. We choose to take this
journey in three steps, each of length 1∕3.
(a) You’re going to draw a slope field for

this equation. To start, draw the axes
and draw a small segment of slope at
the point (0, 1). Explain how we know
that the value of the slope at that point
must be 1.

(b) Our next task is to find the value y(1∕3).
Using the slope you found, explain how
we can know that y(1∕3) ≈ 4∕3.

(c) Calculate the slope of the curve at
(1∕3, 4∕3) and use the result to draw the
next entry in your slope field at that point.

(d) Using the slope you just found, esti-
mate the value of y(2∕3).

(e) Calculate the slope at the new point you
just found and use it to draw another
entry on your slope field.

(f) Use the last slope you calculated
to estimate y(1).

(g) We began with the question “What is
y(1)?” and you answered that question
in Part (f). Explain why your answer
is not exactly correct. Your explana-
tion should enable you to predict
whether the actual y(1) is higher or
lower than your approximation.

(h) Solve the equation dy∕dx = y with ini-
tial condition y(0) = 1 analytically and
find the exact, correct value for y(1).
If you didn’t correctly predict whether
your approximate answer would be too
high or too low rethink your explanation
and explain the result you did get.

1.178 Exploration: Euler’s Method By Computer
[This problem depends on Problem 1.177.]
In Problem 1.177 you used Euler’s method

to find an approximate value for y(1) given
the equation dy∕dx = y and the initial

condition y(0) = 1. You did this in three
steps and found a not-so-great approx-
imation to the exact answer.
(a) Have a computer repeat the calculation,

but this time using 10 steps. In other
words, starting from the known value
y(0) = 1 calculate the slope y′(0) and use
that to find an approximate value for
y(0.1). Then use that to find the slope
y′(0.1) and thus the value y(0.2), and so
on until you have found a value for y(1).
Record the resulting value for y(1). Hint:
We strongly suggest using a loop to do
the ten calculations rather than writ-
ing all ten of them out one at a time.
This will be faster and easier in this step,
and essential for the next one.

(b) Repeat Part (a) with 20 steps instead of 10.
You should find that as you increase the
number of steps your answer gets closer to
the exact answer. Hint: If you haven’t done
so already you should be able to write
your calculation in such a way that you
can change the number of steps simply by
changing one number and rerunning.

(c) Keep doubling the number of steps
until your answer for y(1) is within 1%
of the exact answer. How many steps do
you need and how close is the result-
ing answer to the exact one?

You’ve now used Euler’s method to get a
fairly accurate answer to a problem that
you could have answered more easily with-
out it anyway. Of course, the real power
of the method is in solving problems you
couldn’t easily solve analytically! So now
consider the equation dy∕dx = tan(x + y)
with initial condition y(0) = 1.
(d) Ask your computer to analytically

solve this differential equation.
What result do you get?

(e) Use Euler’s method to find y(0.1) with
four steps. In other words use the slope
y′(0) to estimate y(.025) and so on.

(f) Try again with eight steps and keep
doubling the number of steps until
you get an answer that differs from its
predecessor by less than 1%.


