Discovery Exercise for Lagrange Multipliers

There are two functions in this exercise, and it’s important not to confuse them.

- The “objective” function, \(f(x, y) \), is the one we really care about. This function is not shown in the drawing below.
- The other function will be called here \(g(x, y) \). When we set this function equal to a constant we get the curve \(g(x, y) = k \) shown below. That curve is our “constraint.”

We are interested here in values of the function \(f(x, y) \), but only along the curve defined by \(g(x, y) = k \). Specifically we are interested in finding the maximum value that \(f(x, y) \) attains along that curve. Note that this may not correspond to a local maximum of the function \(f(x, y) \).

The drawing shows the curve \(g(x, y) = k \) and three points \(P_{\text{left}} \), \(P \), and \(P_{\text{right}} \) on that curve. The vector \(\vec{v} \) points parallel to the curve at position \(P \), generally in the direction of \(P_{\text{right}} \).

1. For this part only, suppose that \(D_{\vec{v}} f \) at point \(P \) is positive.

 (a) As you move from \(P \) toward \(P_{\text{right}} \) does the value of \(f(x, y) \) increase, decrease, or stay the same?

 (b) As you move from \(P \) toward \(P_{\text{left}} \) does the value of \(f(x, y) \) increase, decrease, or stay the same?

2. Now, for this part only, suppose that \(D_{\vec{v}} f \) at point \(P \) is negative. Explain how we know that point \(P \) cannot possibly represent the maximum value of \(f \) along the curve.
For the remaining questions in this exercise, suppose that point P does in fact represent the maximum value of f along the curve.

3. What does that assumption imply about $D_v f$ at point P? Explain briefly how you know.

4. What does your answer to Part 3 imply about the gradient ∇f at point P? Explain briefly how you know.
 \textit{Hint:} it doesn’t imply $\nabla f = 0$.

5. Which way does ∇g point at point P? Explain briefly how you know.

6. Use your answers to Parts 4–5 to write an equation relating ∇f and ∇g at the point P where f takes on its maximum along the curve $g = k$.