Chapter: Ordinary Differential Equations

Discovery Exercise for Arbitrary Constants

1. For the differential equation \(\frac{dy}{dx} = -3 \) the solution can be written as \(y = -3x + C \).

 (a) Plug in \(C = 3 \) and show that the resulting function is a valid solution of the differential equation.

 (b) Plug in \(C = 0 \) and show that the resulting function is a valid solution of the differential equation.

 (c) Plug in \(C = x \) and show that the resulting function is not a valid solution of the differential equation.

 (d) What sorts of \(C \)-values are guaranteed to result in valid solutions?

 (e) What is the only \(C \)-value that satisfies the condition \(y(-4) = 15 \)? (To find it, let \(x = -4 \) and \(y = 15 \) and solve for \(C \).)

2. Consider the differential equation \(\frac{dy}{dx} = e^y \).

 (a) Which of the following functions are valid solutions? (List all that apply.)

 \[
 \begin{align*}
 &i. \ y = e^x \\
 &ii. \ y = \ln x \\
 &iii. \ y = -\ln(-x) \\
 &iv. \ y = -\ln(-x) + 4 \\
 &v. \ y = -4\ln(-x) \\
 &vi. \ y = -\ln(-x + 4) \\
 &vii. \ y = -\ln(-x + 7)
 \end{align*}
 \]

 (b) Based on your answers, write a function that has a \(C \) in it, about which you can say, “This function is a valid solution to \(\frac{dy}{dx} = e^y \) for any value of the constant \(C \).”

 (c) Confirm that your solution works for \(C = -3 \).

 (d) Find the value of \(C \) for which \(y(0) = 0 \).