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CHAPTER 14

Calulus of Variations

Before you read this hapter, you should be able to�

∙ solve ordinary differential equations (ODEs) using the methods of �separation of variables� and

�guess and hek� (Chapter 1).

It is also helpful, but not essential, to be able to solve basi optimization problems. This skill in one variable

is not disussed in this book, although the multivariate equivalent is disussed in Chapter 4. In the same

helpful-but-not-essential ategory ome line integrals (Chapter 5).

After you read this hapter, you should be able to�

∙ explain what a �variational problem� is.

∙ use the �Euler-Lagrange equation� to solve variational problems.

∙ derive the Euler-Lagrange equation.

∙ solve mehanis problems by using the �priniple of least ation� to represent them as variational

problems.

An optimization problem seeks to minimize or maximize some value. In �rst year alulus you �nd

one number (suh as a position or time) that optimizes your objetive. In multivariate alulus you

might �nd two or more numbers, suh as a point (x, y) on a plane. In a �variational problem� your

goal is to �nd an entire funtion. An example would be �nding the shortest path between two points

along a urved surfae like a one.

In Setion 14.2 you will learn the �Euler-Lagrange equation.� This remarkable formula starts

with a variational problem and produes a differential equation; if you an solve that equation, you

have found the funtion that optimizes your objetive. In Setion 14.3 you will see where the Euler-

Lagrange equation omes from. Setion 14.4 will highlight one partiularly important appliation

of this tehnique, the Lagrangian formulation of lassial mehanis.

1



7in x 10in Felder c14.tex V3 - June 8, 2016 9:04 A.M. Page 2

2 Chapter 14 Calulus of Variations

14.1 Motivating Exerise: Resuing the Swimmer

Eah hapter begins with a �motivating exerise� for the students to work through in lass or as

homework before studying the hapter. They are optional, but if you use them it an help the students

understand why they are learning the material in the hapter.

You are working as a river lifeguard when you see a man starting to drown.

In eah of the senarios below, the question is the same: draw the path that will take youmost quikly

to the drowning man. In the �rst senario you an draw the path exatly. In the others, your goal is

a rough qualitative sketh.

∙ You move at the same speed in water as you do on land.

∙ Your speed on land is twie as fast as your speed through the water.

∙ The water gets deeper as you get farther from shore, and you are walking the whole way. So

you enter the water at the same speed you had on land, but the farther you get from shore, the

slower you walk.

We wish to all your attention to several features of this problem. It is an optimization problem, in

whih you are trying to minimize a partiular quantity (time). But espeially in the third senario,

you are not minimizing time by �nding some other numerial variable (as in traditional optimization

problems); you are �nding a funtion (a urve) that minimizes the time. Problem of the form ��nd

the funtion that minimizes this integral� will oupy this entire hapter.

14.2 Variational Problems and the Euler-Lagrange

Equation

A �variational problem� means ��nd the urve that minimizes this integral.� The Euler-Lagrange

equation replaes suh a problem with a differential equation. When you solve the differential

equation (using for instane the tehniques ofChapters 1 and 10), you �nd the funtion thatminimizes

the integral.

14.2.1 Disovery Exerise: Variational Problems and the

Euler-Lagrange Equation

Most setions begin with a �disovery exerise� that students an do in lass or as homework before

overing the setion. They are optional, but if the students do them they will derive some of the key

math ideas themselves.

As you work through this exerise your �rst question may well be �why on Earth would anyone

want to do this?�We always enourage that question, but put it on hold for the time being. By the end

of the hapter we hope to have onvined you that problems like this one an hold great importane.
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Here is the problem. In eah of Parts 1�3 we are going to speify a urve y(x) that extends from

(0, 0) to (1, 1). You are going to ompute the following quantity along eah urve.

∫
1

0

(
y

′2 + 10xy

)
dx

Example problem: y = x

2

Solution to example problem: We replae y with x

2

, and therefore y

′
with 2x, in the formula we

are integrating.

∫
1

0

[
(2x)2 + 10x(x2)

]
dx = ∫

1

0

(
4x

2 + 10x

3

)
dx =

4

3

(1)3 +
5

2

(1)4 − 0 ≈ 3.83

1. y = x

2. y = x

3

3. y = x

4

4. Draw a pretty large graphwith (0, 0) at the bottom left and (1, 1) at the top right. On this graph

draw the four urves above and label eah urve with a number representing its integral. For

instane, the urve y = x

2

should be labeled with the number 3.83.

5. A �variational problem� alls for you to �nd the urve that minimizes an integral suh as this

one. Based on your results, sketh in the urve that you think would minimize this partiular

integral.

In Problem 14.3 you will return to this funtion and see how lose your sketh ame to the optimal

urve.

14.2.2 Explanation: Variational Problems and the Euler-Lagrange

Equation

The following are all examples of variational problems.

1. Find the shortest path between two points on a plane. On a sphere. On a one.

2. You're going to roll a toy ar made of pinewood down a urved trak that ends 10 feet down

and 40 feet aross from where it started. What trak shape will get the ar to the �nish line in

the least amount of time?

3. Draw a urve between the origin and the point (1, 1) and then revolve that urve around the y

axis to form a surfae of revolution.What urve will minimize the surfae area of the resulting

surfae? (The solution to this problem desribes the shape of a soap bubble with appropriate

onstraints.)

In eah ase you are trying to �nd the funtion that minimizes an integral.

1

Below we fous on one

of these examples; you will solve the rest in the problems.

Skating on an Ice Cream Cone
The piture below shows the one z

2 = x

2 + y

2

(for z ≥ 0), and two points on that one. What is the

shortest path along the one from point P

1

to point P

2

?

1

Most variational problems involve minimization, but you ould be maximizing instead.
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The most obvious approah is to approximate a straight line as losely as possible, always moving

around-and-up. But irling around the one takes less distane at lower heights, so perhaps we

should go around horizontally from P

1

and then up to P

2

. Or maybe even dip down a little below P

1

as we go around. It isn't obvious, is it?

To approah this problem quantitatively we need a formula for the total distane along any given

urve. Then we will need to �nd the urve that minimizes that formula.

A natural way to speify any given point on this one is by giving its ylindrial oordinates z and

�. An arbitrary small step along this one hanges both of those variables, and the distane of suh a

step is ds =
√
2 dz

2 + z

2

d�2

. That formula is not obvious, and you will derive it two different ways:

geometrially in Problem 14.17 and algebraially in Problem 14.18. But here we want to fous on

what to do with that formula one we have it.

As a �rst step we need to express the total distane along a urve in terms of one variable. You

annot express an arbitrary loation on the one with one variable, but you an express an arbitrary

loation on any given urve with one variable. If a urve is de�ned by a funtion �(z), we an use

that funtion to replae d� with dz.

s = ∫ ds = ∫
√
2 dz

2 + z

2

d�2 = ∫
√

2 dz

2 + z

2

(
d�

dz

dz

)
2

= ∫
z

B

z

A

√
2 + z

2�′2
dz (14.2.1)

Fous on themiddle step in that sequene: the replaement of d�with (d�∕dz)dz to set up an integral

in one variable represents a fairly ommon tehnique in suh problems.

At this point, if we gave you a partiular urve�that is, a funtion �(z) and the oordinates of

two points P

1

and P

2

�you would know just what to integrate to �nd the total distane. That would

be the sort of problem we asked you in the Disovery Exerise (Setion 14.2.1).

But our job is to �nd the �(z) urve that minimizes the integral in Equation 14.2.1. First we're

going to talk brie�y about variational problems in general, and then we will introdue the formula

that solves them. Finally, with new tools in hand, we will irle bak to our one problem.

The Generic Variational Problem
Any variational problem an be expressed in the following way.

1. You are given two points (x
o

, y
o

) and (x
f

, y
f

). You are going to �nd a urve, expressed as y(x),

that extends from the �rst point to the seond. There are of ourse in�nitely many suh urves.

2. You are also given a funtion f (x, y, y′). At any given point on any given urve, x and y and y′

have spei� values so f has a spei� value. Note, however, that the same point on a different

urve might have a different y

′
and therefore a different value of f .

3. Your job is to �nd the urve that minimizes the following integral:

∫
x

f

x

o

f (x, y, y′) dx the generi objetive funtion (14.2.2)

That may look hopelessly abstrat, but it's often easy to alulate for spei� examples. For instane,

in the Disovery Exerise (Setion 14.2.1) the funtion is f (x, y, y′) = y

′2 + 10xy and the endpoints

are (x
o

, y
o

) = (0, 0) and (x
f

, y
f

)=(1,1). To integrate this funtion along the urve y = x

2

, we replae

y with x

2

in the integral and y

′
with 2x.

∫
1

0

[
(2x)2 + 10x(x2)

]
dx = ∫

1

0

(
4x

2 + 10x

3

)
dx =

4

3

(1)3 +
5

2

(1)4 − 0 ≈ 3.83

In the Disovery Exerise you integrate the same funtion along a few other urves. We urge you to

give that a try if you haven't already; �ve minutes of setting up integrals will do you more good than

twenty minutes of staring at the last few paragraphs.
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You may also want to look bak at the one example above. Note how a geometrial senario led

us tominimizing ∫ z

B

z

A

√
2 + z

2�′2
dz, andmake sure you see how this �ts the template of a variational

problem.

Finally, it an be instrutive to onsider how this topi relates to line integrals. In a variational

problem we are given a partiular funtion to integrate along a partiular urve. Isn't that exatly

what a line integral does? Well, yes and no.

A variational problem starts with a funtion f (x, y, y′) and a urve. At eah step along the urve

it multiplies the value of the funtion by the horizontal distane dx, and then adds them up. That's

what Equation 14.2.2 says.

A line integral

2

starts with a funtion f (x, y) and a urve. At eah step of the urve it multiplies

the value of the funtion f (x, y) by the diagonal distane ds, whih an be expressed as
√
1 + y

′2
dx,

and then adds them up.

∫
x

f

x

o

f (x, y) ds = ∫
x

f

x

o

f (x, y)
√
1 + y

′2
dx the generi line integral (14.2.3)

Our point, and we hope you an see it, is that Equation 14.2.3 is a speial ase of Equation 14.2.2.

Every line integral an be used as the basis for a variational problem, but not every variational

problem omes from optimizing a line integral.

The Euler-Lagrange Equation
If you've followed us to this point you understand what kinds of funtions we are integrating, and

why we might want to minimize those integrals. But we haven't said anything yet about how to

minimize them.

We're ready now to jump to the answer. In an introdutory alulus optimization problemyou �nd

the �ritial points� where f

′(x) = 0 and you know that your minimum or maximummust be at one

of them. In a variational problem you �nd the �stationary solutions� by plugging into the formula

below, and your solution will be one of them. Usually the boundary onditions will restrit you to

one stationary solution and you're done.

The Euler-Lagrange Equation

The funtion y(x) that minimizes or maximizes the integral

∫
x

f

x

0

f (y, y′, x) dx

subjet to the boundary onditions y(x
0

) = y

0

, y(x
f

) = y

f

obeys the following differential equation, subjet

to the same boundary onditions.

d

dx

(
)f

)y′

)

−
)f

)y
= 0 (14.2.4)

Wewill derive Equation 14.2.4 in Setion 14.3. Here we want to fous on how and when to use it,

starting with this autionary note: mind the distintion between partial and total derivatives. When

you evaluate )f ∕)y′ you treat y′ as the variable and everything else as a onstant, so the derivative

of y or x is zero. Similarly when you evaluate )f ∕)y. But the d∕dx operator is a total derivative, so

the derivative of y is y

′
and the derivative of y

′
is y

′′
.

2

To be preise, �the line integral of a salar funtion in two dimensions�
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EXAMPLE

The Euler-Lagrange equation

Problem:

Find the funtion x(t) that minimizes the integral ∫ [
(x + ẋ)2 + 3x

2

]
dt from x(0) = 0 to

x(1) = 1. (Remember that ẋ means the derivative of x with respet to time.)

Solution:

First alulate the derivatives in the Euler-Lagrange equation. Note that t is the independent

variable (the role x had in Equation 14.2.4) and x is the funtion we are varying, so the

Euler-Lagrange equation reads (d∕dt)()f∕)ẋ) − ()f ∕)x) = 0. The funtion f is the

integrand, (x + ẋ)2 + 3x

2

.

)f

)ẋ
= 2(x + ẋ)

d

dt

(
)f

)ẋ

)

= 2(ẋ + ẍ)

)f

)x
= 2(x + ẋ) + 6x = 2ẋ + 8x

Plugging these into the Euler-Lagrange equation and dividing by 2 gives ẍ − 4x = 0, with

solution x(t) = Ae

2t + Be

−2t
. To �nd the arbitrary onstants plug in the boundary onditions

x(0) = 0 and x(1) = 1. That gives A + B = 0 and Ae

2 + B∕e2 = 1 with solution

A = 1∕(e2 − e

−2), B = −A.

x(t) =
e

2t − e

−2t

e

2 − e

−2
or x(t) =

sinh 2t

sinh 2

We'll leave it to you to argue that this must be a minimum rather than a maximum.

A Shortcut for Functions That Involve y

′ But Not y
Suppose you want to optimize the integral ∫ (x∕y′)dx.

f =
x

y

′
→

)f

)y′
= −

x

y

′2
,

)f

)y
= 0

So the Euler-Lagrange equation promises that any stationary solutions must �t the following differ-

ential equation.

d

dx

(

−
x

y

′2

)

= 0

If you take that derivative using the quotient rule you get (−y′2 + 2xy

′
y

′′)∕y′4 = 0 and brew another

up of espresso to get you through a long night. But there is a shortut. If d∕dx<something> is zero,

then the <something>must be a onstant. That leads us to a �rst order differential equation that we

an easily solve.

−
x

y

′2
= C → y

′ = C

√
x → y = Ax

3∕2 + B

(We de�ned A = 2C∕3 to simplify the �nal answer.) Take a moment to onvine yourself that you

an use this shortut any time the objetive funtion has no expliit y-dependene.

There is also a shortut for simplifying problems that involve yand y

′
but not x. See Problem 14.60.
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And Now, Back to Our Cone
Equation 14.2.1 gives the distane along any urve �(z) on the one z2 = x

2 + y

2

.

s = ∫
z

B

z

A

√
2 + z

2�′2
dz

Our goal is to �nd the urve that minimizes this integral. Reognizing a variational problem, we

begin by �nding a few derivatives.

f =
√
2 + z

2�′2
→

)f

)�′
=

z

2�′

√
2 + z

2�′2
,

)f

)�
= 0

Did you wonder, when we �rst wrote Equation 14.2.1, why we represented our urve as �(z) instead

of z(�)? The reasonwas that our integrand,whih in its original formwas

√
2 dz

2 + z

2

d�2

, expliitly

ontained a z but no �. When solving for a �(z) funtion with no � in the integrand we an use the

shortut desribed above: rather than solving (d∕dx)()f∕)�′) = 0 diretly, we set )f ∕)�′
equal to a

onstant C. With a bit of algebra we an solve for �′
.

�′ =

√
2C

z

√
z

2 − C

2

This looks ugly but with the substitution C = z sin � (or a omputer) you an get pretty quikly to

the solution.

�(z) =
√
2 sin

−1

(
C

z

)

+ D

Having solved for a �(z) funtion to get the solution easily, it's easier to work with if we now invert

it.

z(�) =
A

sin

(
�∕

√
2 + B

)

The onstants A and B an be hosen to onnet any two arbitrary points on the one. The piture

below shows this urve for two representative endpoints. As we suspeted it might, it dips down in

the middle for the shortest journey.

14.2.3 Problems: Variational Problems and the Euler-Lagrange

Equation

14.1 Walk-Through: The Euler-Lagrange Equation.

In this problem you will �nd the funtion y(x)

that minimizes the integral ∫ 2

1

f (y, y′, x)dx

where f = y

2∕x + xy

′2
, subjet to the bound-

ary onditions y(1) = 0, y(2) = 1.

(a) Calulate )f ∕)y. Remember that this is a partial

derivative so you will treat x and y

′
as onstants.

(b) Calulate )f ∕)y′. (This time treat x

and y as onstants.)
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() Calulate (d∕dx)()f ∕)y′). This is a total deriva-

tive, so you will treat x, y and y

′
as variables,

remembering that the derivative of y

′
is y

′′
.

(d) Plug your formulas into the Euler-Lagrange

equation to get a differential equation for y(x).

(e) Find the general solution to that equation. Hint:

Try guessing a solution of the form y = x

p

.

(f) Use the boundary onditions to solve for the

arbitrary onstants and �nd y(x).

14.2 [This problem depends on Problem 14.1.℄

In Parts (a)�(d), evaluate ∫ (y2∕x + xy

′2)dx

along the given urve from (1, 0) to (2, 1). For

instane, if we gave you y = (x3 − 1)∕7, you

would write y

′ = 3x

2∕7 and then:

∫
2

1

([
(x3 − 1)∕7

]
2

x

+ x

(
3x

2

7

)
2

)

dx ≈ 2.062

You should express all your answers as

deimals, as we did here.

(a) y = x − 1

(b) y = (x − 1)2

() y = 2

x−1 − 1

(d) y = (ln x)∕(ln 2)

(e) Calulate the same integral along the path

you alulated in Problem 14.1. Show that

this path does indeed minimize the integral,

at least among these six hoies.

(f) Find one more funtion that onnets

these two points and evaluate the inte-

gral along that funtion.

14.3 [This problem depends on the Disovery Exerise

(Setion 14.2.1)℄ In the Disovery Exerise

you integrated y

′2 + 10xy from (0, 0) to (1, 1)

along several different urves.

(a) Use the Euler-Lagrange equation to show that

the urve that minimizes this integral between

any two points is y = (5∕6)x3 + C

1

x + C

2

.

(b) Find the urve that minimizes this inte-

gral between (0, 0) and (1, 1).

() Compute the integral along that urve and show

that your result is lower than any of the inte-

grals you found in the Disovery Exerise.

(d) Sketh the urve. Does it roughly math the pre-

dition you made in the original Exerise?

In Problems 14.4�14.15 �nd the funtion y(x) that is a

stationary solution for the given integral. If boundary

onditions are given plug them in to solve for any

arbitrary onstants in your solution. If the integrand

ontains y

′
but not y onsider using the shortut desribed

in the Explanation (Setion 14.2.2.)

14.4 ∫ (
y

′2 − y

2

)
dx

14.5 ∫ (
y

′2 − y

2 + 2y

)
dx

14.6 ∫ 1

0

(
y

′2 − y

)
dx, y(0) = y(1) = 0

14.7 ∫ x

(
y

′ + y

′2
)
dx

14.8 ∫ 1

0

(
y

′2 + xy

)
dx, y(0) = 0, y(1) = 1

14.9 ∫ 1

0

(1 + x)y′2dx, y(0) = 0, y(1) = 2 ln 2

14.10 ∫ (
y

′2 − 2xyy

′
)
dx

14.11 ∫ 2

0

(
y

′2 − 2xyy

′ + y

′
)
dx, y(0) = 0, y(2) = 1

14.12 ∫ �∕2

0

(
y

′2 + yy

′ − y

2

)
dx, y(0) = 0, y(�∕2) = 2

14.13 ∫ (
y

′2 + y

2 + y sin x

)
dx

14.14 ∫ (
y

′ + x

2

y

′2
)
dx

14.15 ∫ sin(y′2 + 1)dx Hint: the resulting differ-

ential equation is easier than it looks if you

think about what it's saying.

14.16 In Problem 14.2 you analyzed the funtion from

Problem 14.1 for a number of different paths, show-

ing that the stationary solution you found does in

fat represent a minimum. Choose a problem that

you solved from Problems 14.4�14.15 and do the

same kind of analysis. Choose a problem that spei-

�ed beginning and end points, and �nd at least three

funtions�in addition to the one you found as the

solution�that onnet those two points. (You don't

need to have done Problem 14.2 to do this.)

14.17 In the Explanation (Setion 14.2.2), when we found

the shortest path between two points on the one z

2 =

x

2 + y

2

, we foused on the use of the Euler-Lagrange

equation to solve the variational problem. But setting

up that problem required �nding the length ds of a

differential step along the one. In this problem you

will derive that ds geometrially; in Problem 14.18

you will reah the same onlusion algebraially.

Note that you an speify any arbitrary point

on this one by giving its ylindrial oordinates

z and �. We therefore begin by representing an

arbitrary step ds as a ombination of two sepa-

rate steps: one that hanges z without hanging �,

and one that hanges � without hanging z.

(a) From the equation z

2 = x

2 + y

2

we an see that

this one makes a 45

◦
angle with the horizontal.

Explain how we know that. (This fat is going

to be important for both the dz and d� steps.)
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(b) Move in a diagonal line diretly up the

one, hanging z but not �. If your z-

oordinate goes up by dz, how long is the

diagonal line you have traversed?

() Nowmove in a irle around the one, hang-

ing � but not z. If your �-oordinate advanes

by d�, how long is the ar you have traversed?

You may �nd it easiest to start by writing your

answer in terms of �, the radius of the one at

whatever height you're at. If you do you should

go on to express � as a funtion of z so your

�nal answer only depends on z and d�.

(d) To �nd the length of an arbitrary move ds,

involving hanges to both z and �, use the

Pythagorean theorem to put together your

two previous results. You an hek your

answer by making sure it mathes the for-

mula we used in the Explanation.

14.18 In the Explanation (Setion 14.2.2), when we found

the shortest path between two points on the one z

2 =

x

2 + y

2

, we foused on the use of the Euler-Lagrange

equation to solve the variational problem. But set-

ting up that problem required �nding the length ds of

a differential step along the one. In Problem 14.17

you derived that ds geometrially; in this problem

you will reah the same onlusion algebraially.

(a) Write the distane ds for an arbitrary move in 3D

in terms of the Cartesian intervals dx, dy, and dz.

(b) Write formulas for the Cartesian oordi-

nates x, y, and z in terms of the ylindri-

al oordinates �, �, and z.

() The one in that problem was de�ned by the

relationship z

2 = x

2 + y

2

. Write that equation

as a relationship between z and � without

any x or y in it. Use that relationship to elim-

inate � from your answers to Part (b).

(d) Use your answers to Part () to write dx and

dy in terms of d� and dz. (These expressions

will only be valid for intervals along the one

beause you used the formula for the one when

you eliminated � from the equations.)

(e) Plug these answers into your expression

for ds and simplify. You an hek your

answer by making sure it mathes the for-

mula we used in the Explanation.

Problems 14.19�14.22 involve �nding the shortest

distane between two points on various surfaes. (This is

alled the �Geodesi problem.�) We provide a model for

this proess in the Explanation, using a one as the surfae.

∙ Choose an appropriate oordinate system where you

an use two variables to speify a point on the surfae.

∙ Find the distane of a step ds along the surfae in the

oordinate systemyou are using.You an approah this

geometrially as in Problem 14.17, or algebraially as

in Problem 14.18.

∙ Rewrite ds in terms of only one oordinate on a urve.

∙ You an now express the Geodesi problem as a vari-

ational problem. Solve it.

14.19 Prove that the shortest path between two points

on the xy plane is a straight line.

14.20 Find the shortest distane between two points

on the one z

2 = 4(x2 + y

2) (for z ≥ 0).

14.21 Find a formula for the shortest path between

two points on the ylinder de�ned by x

2 + y

2 =

R

2

. Desribe the resulting shape.

14.22 Find a formula for the shortest path between two

points on the sphere x

2 + y

2 + z

2 = R

2

. Hint:

parametrize your path as �(�)where � and � are

the angles in spherial oordinates. You should

be able to get a �rst-order differential equation

for your path with an arbitrary onstant on the

right. If you hoose your z-axis to pass through

the initial point on your path then you an argue

that the onstant must be zero. That should redue

the equation to something you an solve.

14.23 A Soap BubbleConsider a urve onneting two

points. The funtion y(x) that minimizes the surfae

area you get when you rotate that urve around the

y-axis is the shape a soap bubble between two rings

would form in the absene of gravity. A small seg-

ment of the urve has length ds =
√
dx

2 + dy

2

; when

rotated about the y-axis this segment sweeps out a

ylindrial area dA = 2�x ds = 2�x
√
dx

2 + dy

2

.

(a) Find the funtion y(x) that minimizes this area.

Your answer will have two arbitrary onstants.

Hint: you should end up reduing the prob-

lem to an integral. You an solve that integral

on a omputer or look it up in a table.

(b) Solve numerially for the onstants

if the urve onnets (1, 1) and (2, 0).

Plot the resulting path.

() Is the urve you plotted straight, onave up, or

onave down? Explain why that makes sense

physially. (If you didn't do the omputer part

you should still be able to do this part by pre-

diting what the urve should look like.)

14.24 Exploration: Fermat's Priniple The speed of light

depends on what medium it is traveling through, with

 (the speed of light in a vauum) being the fastest

possible speed. When light moves from one medium

to another it hanges both speed and diretion.

Consider a light beam that travels from the origin

to the point (2, 2). In the following senarios you

will alulate the path this light beam takes. Your

guide will be �Fermat's Priniple,� whih tells us in
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these ases that the light will follow the fastest path

possible from its starting to its ending position.

(a) First, assume the entire xy plane is a va-

uum, so the light travels at . What path will

the beam take from (0, 0) to (2, 2)? You an

�gure this out with no alulations.

Now assume that from x = 0 to x = 1 is a vauum,

but from x = 1 to x = 2 is a medium in whih light

travels at 0.9. The beam will travel in a straight line

path to x = 1, and then hange diretion and follow

a different straight line to reah the point (2, 2).

(b) Will the light reah x = 1 at exatly the point

(1, 1), or slightly below that point, or slightly

above it? Explain qualitatively how your

answer follows from Fermat's priniple.

() Write a funtion for the total time it takes

the light beam to omplete its journey.

The variable in this funtion will be the y-

position of the light beam when x = 1. (A

drawing will really help here.)

(d) You an �nd the minimum time by setting dt∕dy

equal to zero. Write the resulting equation. You

an simplify it a bit, but not a whole lot.

(e) Solve the equation. If your answer

does not agree with your answer to

Part (b), �x one of them.

Now assume that from x = 0 to x = 2 is a

medium that gradually hanges, suh that the

speed of light is v = (1 − x∕10).

(f) Will the light follow a straight line from (0, 0)

to (2, 2), or a onave up urve, or a onave

down urve? Explain qualitatively how your

solution follows from Fermat's priniple.

(g) Write a formula for the distane ds the light

travels in an in�nitesimal step in its journey.

Your formula will depend on dx, the horizon-

tal distane travelled, and on the funtion y(x)

for its path. Use that result to alulate the time

dt suh a journey makes. Then use that result

and alulus of variations to set up a differen-

tial equation for the urve y(x).Hint:You might

end up with a seond order ODE, but you an

end up with a �rst order, whih is preferable.

(h) Solve the differential equation

using the boundary onditions y(0) = 0,

y(2) = 2 to �nd the path y(x) taken by the

light. Sketh the funtion and make sure its

shape mathes your answer to Part (f). (You

an just ask a omputer to plot it and then

opy the sketh into your answer.)

14.25 Exploration: The BrahistohroneA bead slides

down a fritionless trak under the fore of grav-

ity, falling from rest at (0, 0) to arrive at (x
f

, y
f

)

where y

f

< 0. The �brahistohrone� is de�ned

as the urve y(x) that will get the bead to its �nal

destination in the shortest possible time.

(a) A straight line would be the shortest path,

but it wouldn't be the fastest one. Explain

why not and sketh qualitatively what the

brahistorone urve should look like.

(b) Using onservation of energy, �nd the speed of

the bead at a point (x, y) along the trak.

() In a short interval of time the bead travels a

distane ds =
√
dx

2 + dy

2

, requiring a time

of dt = ds∕v. You need to express the time

dt in one of two ways: as a funtion of x, y,

y

′(x), and dx, or as a funtion of x, y, x′(y),

and dy. Explain why we prefer the latter.

(d) Write an integral that represents the total time

for the bead to fall, and use the tehniques

of this setion to set up a �rst order differen-

tial equation for the optimal urve x(y).

(e) Show that the following parametri urve (where

k is any onstant) is a solution to your differen-

tial equation: x = k(� − sin �), y = k(os � − 1).

Hint: for a parametrially expressed urve you

an alulate dx∕dy as (dx∕d�)∕(dy∕d�).

A urve with this parametri representation is

alled a �yloid,� so you just proved that the

brahistohrone urve is a yloid.

14.26 [This problem depends on Problem 14.25.℄

Consider a partile sliding from the origin

to the point (1,−1). Assume all quantities

are in SI units and take g = 10.

(a) Calulate the onstant C for the brahis-

tohrone urve onneting those points.

Plot the resulting urve.

(b) Calulate the time required for a parti-

le to slide along that urve.

() Compare that time to the time for a par-

tile to slide along a straight line on-

neting the same two points.
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14.3 Why the Euler-Lagrange Equation Works

As with many formulas, you an use the Euler-Lagrange equation without ever knowing where it

omes from. But going through the derivation one or twie, even if you an't reprodue it years

later, gives you a deeper appreiation for the nature of the problem you're solving.

14.3.1 Explanation: Why the Euler-Lagrange Equation Works

You know that every loal minimum or maximum of a one-variable funtion f (x) must our at a

point where f

′(x) is zero.3 Can you explain why? A drawing an be very onvining, but we need

something more mathematial.

Here is one way you an frame the argument. Suppose we laim that f (x) reahes a minimum

at a partiular value x = x

0

. That means by de�nition that hanging x by a small amount�in either

diretion�will not ause f to derease.

We use dx to represent that small hange in x, and dy = f

′(x)dx to represent the resulting hange

in the funtion f . With that notation, the argument goes like this. If f

′(x
0

) is negative, then inreasing

x (moving to the right) will ause f to derease. Conversely, if f

′(x
0

) is positive, then dereasing

x will ause f to derease. In neither ase have you found a minimum value for the funtion! We

onlude that f an only attain a minimum at x

0

if f

′(x
0

) = 0.

Before you read further, try the following exerise: rewrite the previous two paragraphs for a

variational problem. The goal here is not to arrive at the �nal answer (the Euler-Lagrange equation),

but to frame the question properly. One autionary note: in the above disussion, y and f both

represented the same funtion. But throughout the rest of this setion, y will represent a urve and f

will represent a funtion that is de�ned along that urve.

�pause while you write�

Hopefully you startedwith something like this: �Supposewe laim that I = ∫ f (y, y′, x)dx reahes

a minimum along a partiular urve y(x). That means by de�nition that hanging y(x) by a small

amount�in any possible way�will not ause I to derease.�

If you went on from there to disuss dy and df ∕dy, you're doing great. But later you run into

some onfusion beause two different kinds of dy show up in the same argument. We're going to

introdue some new notation to distinguish between them.

1. Good old dymeans �I am moving along a urve by a small dx (moving from left to right if dx

is positive) and seeing the resulting hange in y.� So dy∕dx is the slope of the urve as always.

2. The new �y(x) means �At eah x-value I am hanging the value of y by hanging the urve

itself.� That auses a hange �I , and �nding a formula for that hange is going to be one of

our main tasks in this setion.

3

or is unde�ned, but we will on�ne our disussion to differentiable funtions
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Don't onfuse this new � with the old ) for a partial derivative, whih we will also of ourse be

using!

With that notation in plae, the rest of the argument looks muh the same as it did the �rst time. If

a partiular in�nitesimal hange �y(x) results in a negative �I then that hange will derease I , so we

an't be at a minimum.And if it results in a positive �I then the opposite hange−�y(x)will derease

I , so we still an't be at a minimum. The optimum urve y(x) must therefore have the property that

any tiny hange �y(x) away from it will give �I = 0.

You an make these de�nitions more rigorous by de�ning �y(x) = ��(x)where � is a number and

�(x) is an arbitrary funtion. Then we require dI∕d� = 0 for all smooth funtions �(x) subjet to

the ondition that � = 0 at both boundaries. That last ondition ours beause y(x) must meet the

given boundary onditions so it an't vary at the boundaries. It's straightforward to rewrite all our

derivations in this setion in terms of � and � but we �nd the �y notation easier to follow.

What we are going to do for the rest of this setion is try to onvine you that �I = 0 for any

small variation �y(x) if and only if )f ∕)y − (d∕dx)()f∕)y′) = 0. In fat we're going to make three

different arguments: �rst a visual hand-wave, then a derivation involving integration by parts, and

�nally (in Problem 14.31) a derivation based on Riemann sums. But make sure you �rst understand

what we've presented so far: what �I represents and why it has to be zero for any small �y(x) if y(x)

is a stationary solution. Without that, the rest of this setion won't mean muh.

A Hand-Waving Argument

y(x) (blak) and y + �y (blue)

We begin with a urve y(x) and a funtion f (y, y′, x) de�ned along that urve. Then we hange y(x)

by a small �y at a partiular x = x



. Of ourse, hanging y(x) at only that point would make the urve

disontinuous, so we don't do that; we bend the urve up, as shown above. Then we ask the question,

how does this hange affet the value of our integral I = ∫ f (y′, y, x)dx?

Most diretly it hanges y. If )f ∕)y is positive, that signi�es that inreasing y at a partiular

x-value will inrease f at that value, thus inreasing the total integral I . If )f ∕)y is negative then this

effet would derease I .

But our bump in the urve also hanges y

′
. Spei�ally, y

′
inreases to the left of x



and dereases

to the right of x



. If )f ∕)y′ is the same on both sides of x



then the net effet of hanging y

′
will

anel out. On the other hand, if )f ∕)y′ is larger on the right than on the left, then the effet of a

positive �y will be to derease ∫ f dx. (Make sure you see that.) So the hange in the integral will

be negative if (d∕dx)()f∕)y′) is positive, and vie versa.

Putting all this together it at least seems plausible that the total hange �I from a small hange

�y(x) will look something like ()f ∕)y) − (d∕dx)()f∕)y′). Of ourse this is not a proof. There ould

be other numerial fators, for example. But this hopefully gives you some intuition for why those

partiular two terms appear in the Euler-Lagrange equation and why they have the signs they do.

This argument an be made more rigorous by onsidering the integral as a Riemann sum and then

taking the limit as dx → 0. See Problem 14.31.

As a �nal note, remember that the above argument entered on a hange at a partiular x = x



. A

minimum means that no hange to y(x) anywhere will ause I to derease. So Euler-Lagrange is a

differential equation, requiring that ()f ∕)y) − (d∕dx)()f∕)y′) = 0 everywhere along the urve.

A Real Derivation Using Integration by Parts
We begin one againwith the following question.We have evaluated I = ∫ f (y, y′, x)dx along a given

urve y(x). Nowwe introdue a hange �y(x) to the urve.What effet does that have on the integral?
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Consider the f -value at one partiular x-value. Here y has gone up by some partiular �y, and y′

has gone up by �y′. We an ompute the resulting hange in f from the hain rule.

�f =
)f

)y
�y +

)f

)y′
�y′

That alulation represents the hange in f at one partiular x-value. To �nd the total hange in I ,

we add up the hanges along the urve.

�I = ∫
x

f

x

0

(
)f

)y
�y +

)f

)y′
�y′

)

dx

It's painfully easy to get lost in the symbols, so keep asking yourself what all the piees mean.

For instane, onsider the seond term in that integrand. )f ∕)y′ asks the question�at a partiular

x-value��if I inreased the slope of my urve, all other things being equal, how fast would that

inrease the funtion f ?�We multiply that by �y′: �whenwe hanged our old urve to our new urve,

howmuh did the slope hange at this point?� The produt gives us part (but not all) of the hange in

f aused by hanging the urve at this partiular x-value.When we add the ontribution represented

by the �rst term and integrate aross the entire domain, we get the total hange in I .

We next replae �y′ with (d∕dx)(�y). That substitution is not entirely obvious; think about it for

a moment, remembering that �y′ means the hange in the slope aused by �y. See Problem 14.27.

�I = ∫
x

f

x

0

(
)f

)y
�y +

)f

)y′
d

dx

�y

)

dx (14.3.1)

That substitution allows us to use integration by parts on the seond term in the integrand.

u =
)f

)y′
dv =

(
d

dx

�y

)
dx

du =

(
d

dx

)f

)y′

)

dx v = �y

∫
)f

)y′

(
d

dx

�y

)
dx =

)f

)y′
�y − ∫ �y

(
d

dx

)f

)y′

)

dx

Plug that bak into Equation 14.3.1 and rearrange.

�I =
)f

)y′
�y
|
|
||

x

f

x

0

+ ∫
x

f

x

0

�y

(
)f

)y
−

d

dx

)f

)y′

)

dx

Remember that a variational problem �xes the endpoints at y(x
0

) = y

0

and y(x
f

) = y

f

. That means

that any variation �y that you onsider has to go to zero at both ends, so the term outside the integral

is zero.

Now it remains to say what must be true for �I to equal zero. In general an integral an equal

zero without the integrand being zero everywhere. But in this ase we have to be sure that there

is no possible variation �y(x) for whih �I ≠ 0. The only way ∫ �y<stuff>dx an be zero for all

possible funtions �y is if <stuff> equals zero everywhere. (This is the mathematial equivalent of

the argument we made at the end of our hand-wave: the integral I an only reah a minimum if no

hange in y(x), anywhere along the urve, an result in a derease in f .)

We onlude one again that the stationary solutions our where ()f ∕)y) − (d∕dx)()f∕)y′) = 0.
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14.3.2 Problems: Why the Euler-Lagrange Equation Works

14.27 Our derivation of the Euler-Langrange equation

inluded a step in whih we replaed �y′

with (d∕dx)(�y). In this problem you will

onsider that replaement.

(a) Draw a funtion y(x). (Make it reasonably sim-

ple, but not as simple as a line.) Now draw a se-

ond funtion y + �ywhere �y is the same for all

x-values.What is (d∕dx)(�y)�the rate of hange

of �y as you move from left to right�in this

ase?What is �y′�the hange of the slope from

the �rst funtion to the seond�in this ase?

(b) Redraw your same y(x) funtion. Then draw

a funtion y + �y where �y starts at zero on

the left, and ontinually inreases as you go

to the right. Is (d∕dx)(�y) positive or nega-

tive, and how an you tell from your draw-

ing? Is �y′ positive or negative, and how

an you tell from your drawing?

() Explain in your own words why, in gen-

eral, �y′ = (d∕dx)(�y).

14.28 The Explanation (Setion 14.3.1) presented a deriva-

tion using integration by parts for the stationary solu-

tions to the problem of extremizing ∫ f (y, y′, x)dx

subjet to �xed boundary onditions at the two ends.

The result was the Euler-Lagrange equation.

(a) Following a similar argument, derive an equation

for the stationary solutions to the problem of

extremizing ∫ f (y, y′, y′′, x)dx subjet to �xed

boundary onditions on y and y

′
at the two ends.

(b) Whih step in your derivation would not

have been valid if we had only spei�ed y at

the boundaries instead of y and y

′
?

14.29 The Explanation (Setion 14.3.1) presented a

derivation using integration by parts for the sta-

tionary solutions to the problem of extremizing

∫ f (y, y′, x)dx subjet to �xed boundary ondi-

tions at the two ends. The result was the Euler-

Lagrange equation. Generalize this argument to

derive the Euler-Lagrange equations for the ase of

two urves, ∫ f (y, y′, z, z′, x), where y and z are both

funtions of x with spei�ed values at the bound-

aries. The formulas you derive in this problem will

be used in many problems in Setion 14.4.

14.30 [This problem depends on Problem 14.29.℄

(a) Write a pair of oupled differential equations

for the stationary solutions that minimize

the integral ∫ (z′2 + 2y

′2 + 3yz)dt.

(b) If you've studied linear algebra you might

know how to solve those equations, but

here we'll point you towards one solution:

y(t) = sin(kt), z(t) = −
√
2 sin(kt). Find the

value of k for whih these represent a station-

ary solution to the original integral.

14.31 In this problem you'll derive the Euler-Lagrange

equation by rewriting I = ∫ f (y, y′, x)dx as a

Riemann sum I = lim

Δx→0

RΔx, where

R =

N−1∑

i=0

f [y(x
i

), y′(x
i

), x
i

]

with

x

i

= x

0

+ iΔx, N =
x

f

− x

0

Δx

First you'll �nd the ritial points for R, and in

the limitΔx → 0 these will beomes the station-

ary solutions for I . Throughout the problem we'll

use y

i

and y

′
i

to mean y and y

′
evaluated at x

i

.

(a) For a �nite N this is a multivariate alu-

lus optimization, not a alulus of variations

problem. What are the variables that you

are varying in order to �nd a ritial point

for R? Hint: there are N of them.

(b) Consider the effet of inreasing y

i

by an

amount �y while leaving all of the other

y values onstant. Ignoring the effet this

has on y

′
for the moment, how muh does

this hange R? Your answer will depend on

)f ∕)y
i

, meaning the partial derivative of f with

respet to y, evaluated at the point x

i

.

Now onsider the effet that inreasing y

i

has

on y

′
. In the Riemann sum we an approxi-

mate y

′
i

with [y
i+1 − y

i−1]∕(2Δx).

() Whih two y

′
values are affeted when

you inrease y

i

by �y?

(d) Figure out how muh eah of those two val-

ues are affeted and put them together to

�nd the total hange in R that ours beause

of y

′
when you inrease y

i

by �y.

(e) In the limitΔx → 0 your answer to Part (d)

an be written as �y times a derivative with

respet to x. Rewrite it that way. Hint: look

at how we wrote y

′
i

as a guide.

(f) Combine your answers to Parts (b)�(d)

to �nd the total hange in R resulting

from inreasing y

i

by �y.

(g) A ritial point for a multivariate funtion ours

at a point where in�nitesimal hanges in any of

the variables leads to zero hange in the funtion.

You just onsidered the effet of a hange in y

i

on

R. If you assume that �R resulting from a hange

in any of the y

i

equals zero, your answer beomes

a differential equation for y. Write that equation.
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Note that this derivation isn't quite omplete

beause the formula we used for y

′
isn't valid

at the two endpoints. Sine �y must be zero at

the endpoints to satisfy the boundary ondi-

tions, however, the derivation is valid.

14.4 Speial Appliation: Lagrangian Mehanis

A entury after Newton presented his three laws of motion, Joseph-Louis Lagrange introdued an

alternative. Lagrange's approah and Newton's give the same predition in any situation, and you

an use either one to derive the other. But �Lagrangian mehanis� starts from a different set of

postulates and, in many ases, is more onvenient for alulations than F = ma.

Lagrangian mehanis offers partiular bene�ts when all the fores involved are �onservative�

(see Chapter 8). In suh a ase you an desribe a potential energy for every possible on�guration

of partiles, whih is equivalent to speifying all the relevant fore laws. In this setion we will

onsider only onservative fores.

The Principle of Least Action

To solve for the motion of a mass on an ideal spring, you might write the differential equation that

representsNewton's seond law:F = mẍ = −kx. (We're going to use the dot notation for time deriva-

tives a lot in this setion. Remember that ẍmeans d

2

x∕dt2.) Alternatively, beause the fores involved

are onservative, you might write the differential equation that represents onservation of energy:

KE + U = (1∕2)mẋ2 + (1∕2)kx2 = C. These two approahes are based on fundamentally different

premises, but they lead to the same �nal solution: x(t) = A sin

(√
k∕m t

)
+ B os

(√
k∕m t

)
. You

hoose one approah or the other based on mathematial onveniene.

Lagrangian mehanis starts from a premise that is quite different from either F = ma or onser-

vation of energy.

The Equation of Motion in Lagrangian Mehanis

1. The �Lagrangian� of an objet is its kineti energy minus its potential energy: L = KE − U.

2. �Ation� is the time integral of an objet'sLagrangian as itmoves along a given trajetory:S = ∫ L dt.

3. The �Priniple of Least Ation� says that in moving from position x(t
0

) = x

0

to position x(t
f

) = x

f

the objet will follow the trajetory x(t) that minimizes the ation.

a

Find the trajetory that minimizes an integral? Hey, it's a variational problem! We therefore approah it with

the Euler-Lagrange formula, this time applied to a funtion L(x, ẋ, t) instead of our old f (y, y′, x).

d

dt

(
)L

)ẋ

)
−

)L

)x
= 0

a

Stritly speaking the priniple says that the trajetory will be a stationary solution, whih ould be a minimum or a

maximum. In pratie it's almost always a minimum. The priniple is sometimes alled the �Priniple of Stationary

Ation.� It's also sometimes alled �Hamilton's Priniple.�



7in x 10in Felder c14.tex V3 - June 8, 2016 9:04 A.M. Page 16

16 Chapter 14 Calulus of Variations

We an illustrate the use of this equation using the same example we solved with Newtonian

methods above.

EXAMPLE

An Objet on a Spring

Problem:

Find the position x(t) of a mass m attahed to an ideal spring with spring onstant k.

Solution:

The potential energy of a mass on an ideal spring is U = (1∕2)kx2. The Lagrangian is

KE − U.

L =
1

2

mẋ

2 −
1

2

kx

2

→

)L

)ẋ
= mẋ,

d

dt

(
)L

)ẋ

)
= mẍ,

)L

)x
= −kx

So the Euler-Lagrange formula in this ase beomes mẍ + kx = 0. This is the same

differential equation we got from F = ma so of ourse it leads to the same solution,

x = A sin

(√
k∕m t

)
+ B os

(√
k∕m t

)
.

Generalized Coordinates
The example above led to the same equationwe got fromNewton's seond law, only with more work

on our part. You'll show in Problem 14.32 that it's simple to derive Newton's seond law from the

priniple of least ation. So, why are we doing this?

There are a number of reasons why Lagrangian mehanis is useful. One is that it generalizes to

systems where Newton's laws don't apply. You an write down Lagrangians for relativisti partiles,

for �elds, or even for the urvature of spaetime in general relativity, and the equations of motion in

all those ases follow from the priniple of least ation. The postulates of quantum �eld theory are

most easily stated in terms of Lagrangians (although they are not the same as the priniple of least

ation, whih doesn't hold for quantum systems).

For lassial systems of objets, what makes Lagrangian mehanis useful is that you an write

the Lagrangian in terms of �generalized oordinates��any numbers that desribe the state of the

system�not just Cartesian oordinates. As long as you an express the kineti and potential energy

of your system in terms of your generalized oordinates and their time derivatives (sometimes alled

�generalized veloities�), you an write the Lagrangian and solve the Euler-Lagrange equations. In

many ases this makes ompliated problems muh easier than they would be with Newton's laws

4

.

4

You an write Newton's laws for any set of generalized oordinates, but the equation of motion will not in general be F = ma.

The beauty of Lagrangian mehanis is that the Euler-Lagrange equation in the form we've written it applies no matter what

oordinates you use.
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EXAMPLE

A Bead on a Rotating Rod

Problem:

A bead of mass m is plaed on a fritionless rod that is rotating horizontally at a onstant

angular speed !. Find the distane �(t) of the bead from the enter of the rotation.

Solution:

We will express this situation in polar oordinates,

b

beause the problem determines �(t)

expliitly and asks for �(t). Beause the rotation is horizontal there is no potential energy.

The kineti energy is (1∕2)mv2. (Sine the motion of the rod is �xed by some external fore

we just onsider our system to be the bead.) The radial omponent of veloity is �̇. The

tangential omponent is perhaps less obvious, but if you remember that ! = �̇ is the angular

veloity you an onvert that to tangential veloity with the formula v

tangential

= !�. That

leads to the Lagrangian L = (1∕2)m�̇2 + (1∕2)m!2�2. (You ould also derive that seond

term from the formula for kineti energy of rotation, KE = (1∕2)I!2

, where the moment of

inertia is I = m�2.)

dL

d�̇
= m�̇

d

dt

(
dL

d�̇

)

= m�̈

dL

d�
= m!2�

m�̈ − m!2� = 0

The solution is �(t) = Ae

!t + Be

−!t

. Unless the initial onditions are perfetly �ne-tuned to

set A = 0 the �rst term will ome to dominate and the bead will move away from the origin

exponentially with time.



As a �nal note, we know that ! has units of one over time, so the arguments of the

exponentials are unitless, as they should be. (When one of the authors �rst solved this

problem he made a mistake and got e

−!2

t

, but immediately spotted the error when he

heked units.)

b

You may be used to using r and � for polar oordinates. We use the letters � and � but they mean the same thing:

distane from the origin and angle going ounterlokwise from the positive x axis.



If you're a �rst or seond year physis student, this is aused by interations between the bead and the rod beause

there is no suh thing as entrifugal fore. If you are a junior physis major or beyond, it's just due to the entrifugal

fore. http://xkd.om/123
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The example above applies the Euler-Lagrange equation in a simple setting; the example below

demonstrates more advaned tehniques that you will need in many of the problems. Note three

differenes in partiular.

1. The hoie of oordinates was obvious in the previous example. The following example better

illustrates how the hoie of oordinates an arise from the onstraints inherent in the situation.

2. We wrote down the generalized veloities in the previous example with some arguments from

introdutory physis. Below we derive our veloities from the equations that onvert from

generalized to Cartesian oordinates. (The seond approah always works, but the �rst is

faster and easier when you an do it.)

3. The example below involves minimizing an integral that depends on two funtions instead

of just one. In suh ases you write down the Euler-Lagrange equation separately for eah

funtion. How you do that is demonstrated in our solution; why you an do that is derived in

Problem 14.29.

EXAMPLE

A Sliding Pendulum

Problem:

A pendulum of length H and mass m is hung from a blok of mass M that is free to slide

horizontally, as shown below. Choose an appropriate set of generalized oordinates for this

system and �nd the equations of motion. (We are using H for the pendulum length so it

doesn't get onfused with the Lagrangian L.)

Solution:

The simplest hoie of generalized oordinates is the horizontal position of the blok, X, and

the angle � of the pendulum, whih we de�ne to be zero when it is straight down. It's easiest

to express the energy in terms of the Cartesian oordinates of the pendulum bob, x and y. The

kineti energy is (1∕2)MẊ

2 + (1∕2)mẋ2 + (1∕2)mẏ2 and the potential energy is mgy. (The

blok has no potential energy.) Next we have to relate x and y to X and � so we an get this

all in terms of our generalized oordinates.

You might wonder why we don't just use x, y, and X. That would be too many degrees of

freedom; x and y are onstrained by the fat that the bob always stays at the end of the

pendulum string. The simplest way to deal with that is to use two generalized oordinates

that desribe the motion with no additional onstraints required.

If we set y = 0 at the top of the pendulum then y = −H os �. For the x oordinate we need

to aount for the position of the blok: x = X + H sin �. From these we get ẏ = H(sin �)�̇

and ẋ = Ẋ + H(os �)�̇ and from those we get the Lagrangian. (Notie that the potential

energy is −mgH os � and the Lagrangian subtrats the potential energy, so it shows up with

a plus sign.)

L =
1

2

MẊ

2 +
1

2

mẊ

2 + mH(os �)Ẋ�̇ +
1

2

mH

2(os2 �)�̇2 +
1

2

mH

2(sin2 �)�̇2 + mgH os �

=
1

2

(M + m)Ẋ2 + mH(os �)Ẋ�̇ +
1

2

mH

2�̇2 + mgH os �
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For the most part this looks like the Lagrangian for a freely sliding system with mass M + m

plus the Lagrangian for a rotating pendulum of mass m. All of the interation between the two

motions omes about beause of the seond term, whih ouples the two veloities. To see

the effet that has we write the Euler-Lagrange equations for both our independent variables.

)L

)Ẋ
=(M + m)Ẋ + mH(os �)�̇

)L

)�̇
=mH(os �)Ẋ + mH

2�̇

d

dt

(
)L

)Ẋ

)

=(M + m)Ẍ + mH(os �)�̈
d

dt

(
)L

)�̇

)

=mH(os �)Ẍ − mH(sin �)Ẋ�̇

− mH(sin �)�̇2 + mH

2�̈

)L

)X
=0

)L

)�
= − mH(sin �)Ẋ�̇ − mgH sin �

Plugging this into the Euler-Lagrange equations and anelling some onstants we get the

equations of motion for the system.

(
M

m

+ 1

)
Ẍ + H(os �)�̈ − H(sin �)�̇2 = 0

(os �)Ẍ − (sin �)Ẋ�̇ + H�̈ + (sin �)Ẋ�̇ + g sin � = 0

As a reality hek notie that all the terms in both equations have units of distane over time

squared. (It doesn't matter that the two equations have the same units as eah other, but if

two terms in one of the equations had different units from eah other we would know we'd

made a mistake.)

Of ourse you're not likely to be able to solve the equations of motion we just derived for the

sliding pendulum, but you an always ask a omputer to do that, numerially if not analytially.What

Lagrangian mehanis allowed you to do was go from the physial desription to a set of equations

that you an give to a omputer. See Problem 14.40.

As a �nal note we should say that you an still sometimes use the shortut we explained in

Setion 14.2.2 for variational problems that involve ẋ but not x. If the Lagrangian for one of your

generalized oordinates q involves q̇ but not q itself then the Euler-Lagrange equation for that

oordinate an be written )L∕)q̇ = C where C is an arbitrary onstant. (We ould have used this

shortut for X in the sliding pendulum problem above but sine Ẍ shows up in the other Euler-

Lagrange equation this wouldn't have made the equations any easier to work with.)

14.4.1 Problems: Lagrangian Mehanis

14.32 Consider a partile with kineti energy (1∕2)mẋ2

and potential energy U(x). Realling that

F = −dU∕dx, prove that the Euler-Lagrange

equation for the motion of the partile is equiv-

alent to Newton's seond law.

14.33 Using the equation (1∕2)mẋ2 + (1∕2)kx2 = C

and the initial onditions x(0) = x

0

, ẋ(0) = 0,

derive the solution x(t) for a mass on a spring

pulled out to a distane x

0

and released. Chek

that your answer mathes the one we got.

14.34 A ball with massm travels under the in�uene of a

onstant gravitational foreF = mg. Use Lagrangian

mehanis to write the equation of motion for this

mass, and then solve that equation to show that the

resulting motion is a quadrati funtion y(t).

14.35 A omet with mass m is traveling under the in�u-

ene of Earth gravity, a fore F = −GM
E

m∕r2.

Use Lagrangian mehanis to write the equation

of motion for this omet. You do not need to

solve the resulting differential equation.
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14.36 Amassless spring with spring onstant k hangs down

from the eiling. At the end of the spring is a massm.

(a) Use Lagrangian mehanis to write the equation

of motion for this mass. You do not need to solve

the resulting differential equation (although you

an, if you have gone through Chapter 1).

(b) Use Newtonian mehanis to write the

equation of motion for the same mass. Hope-

fully you'll get the same answer!

14.37 Use Lagrangian mehanis to write the equation of

motion for a pendulum onsisting of a ball of mass

m hung from a massless string of lengthH . You do

not need to solve the resulting differential equation.

14.38 In the example on Page 17 we derived and solved

the equations of motion for a bead on a horizontal,

rotating rod. Do the same for a bead on a rod that is

rotating vertially with onstant angular veloity!.

14.39 In the example on Page 17 we derived and

solved the equations of motion for a bead

on a horizontal, rotating rod.

(a) Redo the problem assuming the rod is slowing

down:! =
√
2∕t. Find the general solution �(t).

(b) Now assume that at time t = 1 the system begins,

with the bead at � = 1 with radial speed �̇ = 0.

Solve for the arbitrary oef�ients and �nd �(t).

14.40 In the example on Page 18 we found the

equations of motion for a sliding pendulum. Solve

those equations to �nd the motion if the system starts

at rest with the pendulum pulled up to an angle of

�∕4. TakeH = 1 m andM∕m = 2. Have the om-

puter draw the blok and pendulum at a series of

times to show what the resulting motion looks like.

14.41 In the example on Page 18 we found the equations

of motion for a sliding pendulum. Now sup-

pose the blok is not free to move but is pushed

bak and forth: X = A sin(!t).

(a) Find the Euler-Lagrange equation for �(t).

(b) For small osillations � ≈ 0 you an approx-

imate this differential equation with a lin-

ear one. Make that approximation and solve

the resulting differential equation.

() The equations of motion you wrote in Part (a)

should desribe this system aurately,

but your solution in Part (b) is only valid

if � remains small. What physial irum-

stanes would make this a reasonable, or

an unreasonable, approximation?

14.42 The piture below shows a ball hanging

from a massless spring that is free to swing

bak and forth like a pendulum.

Assume the ball has massm and the spring has spring

onstant k and equilibrium length H . Choose an

appropriate set of generalized oordinates and �nd

the equations of motion for the ball. You do not need

to solve the resulting differential equations.

14.43 [This problem depends on Problem 14.42.℄

Solve the equations of motion to �nd the motion if

the system starts at rest with the pendulum pulled up

to an angle of �∕4 and the spring at its equilibrium

length. Take H = 1 m, k = 5 N/m, and m = 1 kg.

Have the omputer draw the pendulum at a series of

times to show what the resulting motion looks like.

14.44 A uniform, solid ylinder of mass m and radius

r is rolling inside a hollow ylinder with larger

radius R. Let s be the arlength from the small

ylinder's urrent position to the bottom. The

larger ylinder does not move.

(a) Find the Euler-Lagrange equation of motion

for s.Hint: you will need to look up (or alu-

late) the moment of inertia of a uniform solid

ylinder about its axis. You do not need to

solve the resulting differential equation.

(b) What is the frequeny of small osil-

lations of this system?

14.45 A blok of massm is sliding on the inside of a fri-

tionless, hollow, hemispherial bowl of radius R.

Choose an appropriate set of generalized oor-

dinates and write the equations of motion for the

blok. You do not need to solve the resulting dif-

ferential equations. (The bowl does not move.)

14.46 An iron blok of massm is sliding on the inside of

a fritionless, hollow, hemispherial bowl of radius

R. A uniform magneti �eld exerts a onstant fore

F

B

î on the blok. (The bowl does not move.)

(a) In general magneti fores annot be asso-

iated with a salar potential energy, but in
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this ase the magneti fore an. Find the

potential energy for that fore.

(b) Choose an appropriate set of generalized oor-

dinates and write the equations of motion

for the blok. You do not need to solve the

resulting differential equations.

14.47 A blok of massm is sliding on the inside of a fri-

tionless, hollow one with the vertex at the bot-

tom, height H , and upper radius R. Choose an

appropriate set of generalized oordinates and

write the equations of motion for the blok.

14.48 A pendulum of length H is suspended from a

point that is being moved about a vertial irle of

radius Rwith angular speed !. Find the equation

of motion for the pendulum's angle �(t).

14.49 A bead of massm is strung on a wire that is bent into

a vertial irle of radius R. The irle is spun around

its vertial diameter at onstant angular speed !.

(a) Find the equation of motion for the angle of

the bead on the wire. You do not need to solve

the resulting differential equation.

(b) Your differential equation should have two

or three equilibrium values of �, depend-

ing on the value of !. Find them, and

explain physially why eah one is an

equilibrium point for the bead.

() Identify eah of these equilibrium angles

as stable, unstable, or stable under er-

tain (spei�ed) irumstanes.

(d) A stable equilibrium an lead to osillatory

behavior. Find the frequeny of osillation

around one stable equilibrium you identi�ed,

assuming these osillations are small.

14.50 Exploration: Lagrange Multipliers If you want

to minimize the funtion f (x, y) subjet to the on-

straint g(x, y) = 0 you have two main hoies. You

an use the onstraint to eliminate one variable,

write f as a single-variable funtion, and optimize

it. Alternatively you an use a Lagrange multiplier to

solve the problem in terms of both variables. (See

Chapter 4.) The same is true for variational prob-

lems. If you want to minimize ∫ f (y, y′, z, z′, x)dx

subjet to the onstraint g(y, z) = 0 you an either

use the onstraint to eliminate y or z from the

problem or you an use the following modi�ed

form of the Euler-Lagrange equations.

d

dx

(
)f

)y′

)

−
)f

)y
− �

)g

)y
= 0

d

dx

(
)f

)z′

)

−
)f

)z
− �

)g

)z
= 0

g = 0

For most alulus of variations problems it's just as

easy to eliminate variables and not worry about �.

In Lagrangian mehanis, however, the new vari-

able � gives you the fore that holds the objet on

the onstrained surfae. As an example, onsider

a blok sliding down a hemispherial mound of

radius R. The blok starts at rest at the top and is

given an in�nitesimal nudge to get it moving.

(a) First use a single generalized oordinate �

for the blok's angle as it slides down. Write

the Euler-Lagrange equation for �.

(b) This equation has no simple solution. At a glane

it looks like you ould reasonably approximate

the motion by replaing sin � with �. Explain

why this wouldn't make sense in this ase.

() Now reonsider the problem with the gener-

alized oordinates r (radial distane) and �

and the onstraint r − R = 0. Find the Euler-

Lagrange equations for r and �. In writing the

kineti and potential energy treat r as a free vari-

able; the onstraint will ome in through �.

(d) With the onstraint r = R you an set

ṙ = r̈ = 0. Use that to get an expression for �

that only depends on �, �̇, and onstants.

(e) Use onservation of energy to express �̇ as

a funtion of �. Plug this into your earlier

equation to �nd � as a funtion of �.
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(f) The onstraint fore � is in this ase the

normal fore. Find � at � = 0 and explain

why your answer makes sense.

(g) Use your answer for �(�) to predit when

the blok will lose ontat with the sur-

fae of the hemisphere.

14.5 Additional Problems

In Problems 14.51�14.53 �nd the funtion y(x) that is a

stationary solution for the given integral. If boundary

onditions are given plug them in to solve for any arbitrary

onstants in your solution. If the integrand ontains y

′
but

not y onsider using the shortut desribed in Setion 14.2.

14.51 ∫ y

′2
dx, y(0) = 0, y(1) = 1

14.52 ∫ √
y

′2 + x

2

dx

14.53 ∫ (
xy

′2 + y

2∕x
)
dx, y(1) = 0, y(2) = 4

14.54 Prove that a stationary solution to ∫ f (y′)dx

between any two endpoints is always a straight

line for any smooth funtion f (y′). Hint: If

you're stuk pik a ouple of simple examples

of f (y′) and solve those �rst.

14.55 (a) Prove that for the integral ∫ x

f

x

0

y

′
f (y)dx any fun-

tion y(x) is a stationary solution regardless of the

funtion f (y).Hint: If you're stuk pik a ouple

of simple examples of f (y) and solve those �rst.

(b) To see why this happened, start with a spe-

i� example: ∫ 1

0

y

′
y

2

dx subjet to the bound-

ary onditions y(0) = 0, y(1) = 1. Evaluate

this integral. You should be able to get a spe-

i� numerial answer without knowing what

the funtion y(x) is. Same hint as above: if

you're stuk try doing this for y(x) = sin(�x∕2).

You should be able to see that the basi pro-

ess you use for that ase an work for any

y(x) that meets the boundary onditions.

() Now generalize that result to explain why all

funtions y(x) are stationary solutions of the

integral ∫ x

f

x

0

y

′
f (y)dx for any funtion f (y).

14.56 Prove that the shortest path between two points on

the plane ax + by + z = 0 is a straight line.

14.57 Find a formula for the shortest path between

two points on the paraboli ylinder y = kx

2

.

You should get as far as writing z(x) as an inte-

gral by hand, but you're welome to turn that

slightly messy integral over to a omputer.

14.58 Ceelia is in her lifeguard stand at the edge of

the water. Take her stand to be at the origin and

take the y axis to point diretly out to sea. The

water is shallow enough that she runs through it

to resue swimmers, but the deeper she goes the

slower she runs so her speed is v = v

0

− ky

2

.

(a) Write a differential equation for the quikest

path she an take to reah a drowning swimmer

at position (W ,H). (These are 2D oordinates

beause we're assuming the swimmer is at the

surfae. TakeW and H to be positive.)

(b) Without solving the differential equation

(yet), sketh what the path should look

like. Explain how you know if it will be

straight, urved up, or urved down.

() Take the swimmer's position to be (1, 1),

v

0

= 1, and k = 0.5. Solve the equation you

found and plot the optimal path. If it doesn't

math your expetation �gure out whether your

logi or your alulations went wrong.

14.59 The eletrostati potential from a point harge q at

a point P is kq∕r, where k is a onstant and r is the

distane from P to the point harge. For a ontinu-

ous harge distribution you �nd the potential at P by

breaking the harge into pointlike piees and inte-

grating. A string of uniform harge per unit length �

needs to onnet the points (L, 0) and (0, 2L). Find

the path of the string that minimizes the potential

at the origin.Hint: start by �nding a polar urve

�(�), and rewrite it as �(�) after you �nd it.

14.60 The Beltrami Identity It an be shown that the

Euler-Lagrange equation is equivalent to the

equation )f ∕)x − d∕dx[f − y

′()f ∕)y′)] = 0. This

form is generally less useful for solving problems,

but when f doesn't depend on x this simpli�es to

f − y

′()f ∕)y′) = C, whih is known as the �Beltrami

identity.� In Setion 14.2 we derived the equation

for the shortest distane between two points on a

45

◦
one. In this problem you'll redo that alula-

tion using the Beltrami identity. The starting point

was the distane formula: ds =
√
2dz

2 + z

2

d�2

.

(a) In Setion 14.2 we fatored out dz to write

an integral in terms of a funtion �(z). Why

did we hoose to do it that way instead

of writing it in terms of z(�)?

(b) This time fator out a d� and write an integral

for the distane s in terms of the funtion z(�).
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() Use the Beltrami identity to write a dif-

ferential equation for z(�).

(d) You ould solve this equation with separation

of variables, but the integral turns out to be a

pain. Instead, plug in the solution we already

found for z(�) and verify that it solves the dif-

ferential equation you wrote in Part ().

14.61 Suppose you were asked to �nd stationary

solutions to ∫ (
y

2 + x

2

y

′
)
dx.

(a) Apply the Euler-Lagrange equation in the usual

way. What equation do you end up with?

You should �nd that you get an exat answer

with no arbitrary onstants, even though we

didn't speify boundary onditions.

(b) Suppose you wanted to minimize this par-

tiular integral between the points (0, 0) and

(1, 1). What does your solution to Part (a)

imply about the best urve to hoose?

() Suppose you wanted to minimize this par-

tiular integral between the points (0, 0) and

(1, 2). What does your solution to Part (a)

imply about the best urve to hoose?


