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CHAPTER 14

Cal
ulus of Variations

Before you read this 
hapter, you should be able to�

∙ solve ordinary differential equations (ODEs) using the methods of �separation of variables� and

�guess and 
he
k� (Chapter 1).

It is also helpful, but not essential, to be able to solve basi
 optimization problems. This skill in one variable

is not dis
ussed in this book, although the multivariate equivalent is dis
ussed in Chapter 4. In the same

helpful-but-not-essential 
ategory 
ome line integrals (Chapter 5).

After you read this 
hapter, you should be able to�

∙ explain what a �variational problem� is.

∙ use the �Euler-Lagrange equation� to solve variational problems.

∙ derive the Euler-Lagrange equation.

∙ solve me
hani
s problems by using the �prin
iple of least a
tion� to represent them as variational

problems.

An optimization problem seeks to minimize or maximize some value. In �rst year 
al
ulus you �nd

one number (su
h as a position or time) that optimizes your obje
tive. In multivariate 
al
ulus you

might �nd two or more numbers, su
h as a point (x, y) on a plane. In a �variational problem� your

goal is to �nd an entire fun
tion. An example would be �nding the shortest path between two points

along a 
urved surfa
e like a 
one.

In Se
tion 14.2 you will learn the �Euler-Lagrange equation.� This remarkable formula starts

with a variational problem and produ
es a differential equation; if you 
an solve that equation, you

have found the fun
tion that optimizes your obje
tive. In Se
tion 14.3 you will see where the Euler-

Lagrange equation 
omes from. Se
tion 14.4 will highlight one parti
ularly important appli
ation

of this te
hnique, the Lagrangian formulation of 
lassi
al me
hani
s.

1
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ulus of Variations

14.1 Motivating Exer
ise: Res
uing the Swimmer

Ea
h 
hapter begins with a �motivating exer
ise� for the students to work through in 
lass or as

homework before studying the 
hapter. They are optional, but if you use them it 
an help the students

understand why they are learning the material in the 
hapter.

You are working as a river lifeguard when you see a man starting to drown.

In ea
h of the s
enarios below, the question is the same: draw the path that will take youmost qui
kly

to the drowning man. In the �rst s
enario you 
an draw the path exa
tly. In the others, your goal is

a rough qualitative sket
h.

∙ You move at the same speed in water as you do on land.

∙ Your speed on land is twi
e as fast as your speed through the water.

∙ The water gets deeper as you get farther from shore, and you are walking the whole way. So

you enter the water at the same speed you had on land, but the farther you get from shore, the

slower you walk.

We wish to 
all your attention to several features of this problem. It is an optimization problem, in

whi
h you are trying to minimize a parti
ular quantity (time). But espe
ially in the third s
enario,

you are not minimizing time by �nding some other numeri
al variable (as in traditional optimization

problems); you are �nding a fun
tion (a 
urve) that minimizes the time. Problem of the form ��nd

the fun
tion that minimizes this integral� will o

upy this entire 
hapter.

14.2 Variational Problems and the Euler-Lagrange

Equation

A �variational problem� means ��nd the 
urve that minimizes this integral.� The Euler-Lagrange

equation repla
es su
h a problem with a differential equation. When you solve the differential

equation (using for instan
e the te
hniques ofChapters 1 and 10), you �nd the fun
tion thatminimizes

the integral.

14.2.1 Dis
overy Exer
ise: Variational Problems and the

Euler-Lagrange Equation

Most se
tions begin with a �dis
overy exer
ise� that students 
an do in 
lass or as homework before


overing the se
tion. They are optional, but if the students do them they will derive some of the key

math ideas themselves.

As you work through this exer
ise your �rst question may well be �why on Earth would anyone

want to do this?�We always en
ourage that question, but put it on hold for the time being. By the end

of the 
hapter we hope to have 
onvin
ed you that problems like this one 
an hold great importan
e.
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Here is the problem. In ea
h of Parts 1�3 we are going to spe
ify a 
urve y(x) that extends from

(0, 0) to (1, 1). You are going to 
ompute the following quantity along ea
h 
urve.

∫
1

0

(
y

′2 + 10xy

)
dx

Example problem: y = x

2

Solution to example problem: We repla
e y with x

2

, and therefore y

′
with 2x, in the formula we

are integrating.

∫
1

0

[
(2x)2 + 10x(x2)

]
dx = ∫

1

0

(
4x

2 + 10x

3

)
dx =

4

3

(1)3 +
5

2

(1)4 − 0 ≈ 3.83

1. y = x

2. y = x

3

3. y = x

4

4. Draw a pretty large graphwith (0, 0) at the bottom left and (1, 1) at the top right. On this graph

draw the four 
urves above and label ea
h 
urve with a number representing its integral. For

instan
e, the 
urve y = x

2

should be labeled with the number 3.83.

5. A �variational problem� 
alls for you to �nd the 
urve that minimizes an integral su
h as this

one. Based on your results, sket
h in the 
urve that you think would minimize this parti
ular

integral.

In Problem 14.3 you will return to this fun
tion and see how 
lose your sket
h 
ame to the optimal


urve.

14.2.2 Explanation: Variational Problems and the Euler-Lagrange

Equation

The following are all examples of variational problems.

1. Find the shortest path between two points on a plane. On a sphere. On a 
one.

2. You're going to roll a toy 
ar made of pinewood down a 
urved tra
k that ends 10 feet down

and 40 feet a
ross from where it started. What tra
k shape will get the 
ar to the �nish line in

the least amount of time?

3. Draw a 
urve between the origin and the point (1, 1) and then revolve that 
urve around the y

axis to form a surfa
e of revolution.What 
urve will minimize the surfa
e area of the resulting

surfa
e? (The solution to this problem des
ribes the shape of a soap bubble with appropriate


onstraints.)

In ea
h 
ase you are trying to �nd the fun
tion that minimizes an integral.

1

Below we fo
us on one

of these examples; you will solve the rest in the problems.

Skating on an Ice Cream Cone
The pi
ture below shows the 
one z

2 = x

2 + y

2

(for z ≥ 0), and two points on that 
one. What is the

shortest path along the 
one from point P

1

to point P

2

?

1

Most variational problems involve minimization, but you 
ould be maximizing instead.
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The most obvious approa
h is to approximate a straight line as 
losely as possible, always moving

around-and-up. But 
ir
ling around the 
one takes less distan
e at lower heights, so perhaps we

should go around horizontally from P

1

and then up to P

2

. Or maybe even dip down a little below P

1

as we go around. It isn't obvious, is it?

To approa
h this problem quantitatively we need a formula for the total distan
e along any given


urve. Then we will need to �nd the 
urve that minimizes that formula.

A natural way to spe
ify any given point on this 
one is by giving its 
ylindri
al 
oordinates z and

�. An arbitrary small step along this 
one 
hanges both of those variables, and the distan
e of su
h a

step is ds =
√
2 dz

2 + z

2

d�2

. That formula is not obvious, and you will derive it two different ways:

geometri
ally in Problem 14.17 and algebrai
ally in Problem 14.18. But here we want to fo
us on

what to do with that formula on
e we have it.

As a �rst step we need to express the total distan
e along a 
urve in terms of one variable. You


annot express an arbitrary lo
ation on the 
one with one variable, but you 
an express an arbitrary

lo
ation on any given 
urve with one variable. If a 
urve is de�ned by a fun
tion �(z), we 
an use

that fun
tion to repla
e d� with dz.

s = ∫ ds = ∫
√
2 dz

2 + z

2

d�2 = ∫
√

2 dz

2 + z

2

(
d�

dz

dz

)
2

= ∫
z

B

z

A

√
2 + z

2�′2
dz (14.2.1)

Fo
us on themiddle step in that sequen
e: the repla
ement of d�with (d�∕dz)dz to set up an integral

in one variable represents a fairly 
ommon te
hnique in su
h problems.

At this point, if we gave you a parti
ular 
urve�that is, a fun
tion �(z) and the 
oordinates of

two points P

1

and P

2

�you would know just what to integrate to �nd the total distan
e. That would

be the sort of problem we asked you in the Dis
overy Exer
ise (Se
tion 14.2.1).

But our job is to �nd the �(z) 
urve that minimizes the integral in Equation 14.2.1. First we're

going to talk brie�y about variational problems in general, and then we will introdu
e the formula

that solves them. Finally, with new tools in hand, we will 
ir
le ba
k to our 
one problem.

The Generic Variational Problem
Any variational problem 
an be expressed in the following way.

1. You are given two points (x
o

, y
o

) and (x
f

, y
f

). You are going to �nd a 
urve, expressed as y(x),

that extends from the �rst point to the se
ond. There are of 
ourse in�nitely many su
h 
urves.

2. You are also given a fun
tion f (x, y, y′). At any given point on any given 
urve, x and y and y′

have spe
i�
 values so f has a spe
i�
 value. Note, however, that the same point on a different


urve might have a different y

′
and therefore a different value of f .

3. Your job is to �nd the 
urve that minimizes the following integral:

∫
x

f

x

o

f (x, y, y′) dx the generi
 obje
tive fun
tion (14.2.2)

That may look hopelessly abstra
t, but it's often easy to 
al
ulate for spe
i�
 examples. For instan
e,

in the Dis
overy Exer
ise (Se
tion 14.2.1) the fun
tion is f (x, y, y′) = y

′2 + 10xy and the endpoints

are (x
o

, y
o

) = (0, 0) and (x
f

, y
f

)=(1,1). To integrate this fun
tion along the 
urve y = x

2

, we repla
e

y with x

2

in the integral and y

′
with 2x.

∫
1

0

[
(2x)2 + 10x(x2)

]
dx = ∫

1

0

(
4x

2 + 10x

3

)
dx =

4

3

(1)3 +
5

2

(1)4 − 0 ≈ 3.83

In the Dis
overy Exer
ise you integrate the same fun
tion along a few other 
urves. We urge you to

give that a try if you haven't already; �ve minutes of setting up integrals will do you more good than

twenty minutes of staring at the last few paragraphs.
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You may also want to look ba
k at the 
one example above. Note how a geometri
al s
enario led

us tominimizing ∫ z

B

z

A

√
2 + z

2�′2
dz, andmake sure you see how this �ts the template of a variational

problem.

Finally, it 
an be instru
tive to 
onsider how this topi
 relates to line integrals. In a variational

problem we are given a parti
ular fun
tion to integrate along a parti
ular 
urve. Isn't that exa
tly

what a line integral does? Well, yes and no.

A variational problem starts with a fun
tion f (x, y, y′) and a 
urve. At ea
h step along the 
urve

it multiplies the value of the fun
tion by the horizontal distan
e dx, and then adds them up. That's

what Equation 14.2.2 says.

A line integral

2

starts with a fun
tion f (x, y) and a 
urve. At ea
h step of the 
urve it multiplies

the value of the fun
tion f (x, y) by the diagonal distan
e ds, whi
h 
an be expressed as
√
1 + y

′2
dx,

and then adds them up.

∫
x

f

x

o

f (x, y) ds = ∫
x

f

x

o

f (x, y)
√
1 + y

′2
dx the generi
 line integral (14.2.3)

Our point, and we hope you 
an see it, is that Equation 14.2.3 is a spe
ial 
ase of Equation 14.2.2.

Every line integral 
an be used as the basis for a variational problem, but not every variational

problem 
omes from optimizing a line integral.

The Euler-Lagrange Equation
If you've followed us to this point you understand what kinds of fun
tions we are integrating, and

why we might want to minimize those integrals. But we haven't said anything yet about how to

minimize them.

We're ready now to jump to the answer. In an introdu
tory 
al
ulus optimization problemyou �nd

the �
riti
al points� where f

′(x) = 0 and you know that your minimum or maximummust be at one

of them. In a variational problem you �nd the �stationary solutions� by plugging into the formula

below, and your solution will be one of them. Usually the boundary 
onditions will restri
t you to

one stationary solution and you're done.

The Euler-Lagrange Equation

The fun
tion y(x) that minimizes or maximizes the integral

∫
x

f

x

0

f (y, y′, x) dx

subje
t to the boundary 
onditions y(x
0

) = y

0

, y(x
f

) = y

f

obeys the following differential equation, subje
t

to the same boundary 
onditions.

d

dx

(
)f

)y′

)

−
)f

)y
= 0 (14.2.4)

Wewill derive Equation 14.2.4 in Se
tion 14.3. Here we want to fo
us on how and when to use it,

starting with this 
autionary note: mind the distin
tion between partial and total derivatives. When

you evaluate )f ∕)y′ you treat y′ as the variable and everything else as a 
onstant, so the derivative

of y or x is zero. Similarly when you evaluate )f ∕)y. But the d∕dx operator is a total derivative, so

the derivative of y is y

′
and the derivative of y

′
is y

′′
.

2

To be pre
ise, �the line integral of a s
alar fun
tion in two dimensions�
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EXAMPLE

The Euler-Lagrange equation

Problem:

Find the fun
tion x(t) that minimizes the integral ∫ [
(x + ẋ)2 + 3x

2

]
dt from x(0) = 0 to

x(1) = 1. (Remember that ẋ means the derivative of x with respe
t to time.)

Solution:

First 
al
ulate the derivatives in the Euler-Lagrange equation. Note that t is the independent

variable (the role x had in Equation 14.2.4) and x is the fun
tion we are varying, so the

Euler-Lagrange equation reads (d∕dt)()f∕)ẋ) − ()f ∕)x) = 0. The fun
tion f is the

integrand, (x + ẋ)2 + 3x

2

.

)f

)ẋ
= 2(x + ẋ)

d

dt

(
)f

)ẋ

)

= 2(ẋ + ẍ)

)f

)x
= 2(x + ẋ) + 6x = 2ẋ + 8x

Plugging these into the Euler-Lagrange equation and dividing by 2 gives ẍ − 4x = 0, with

solution x(t) = Ae

2t + Be

−2t
. To �nd the arbitrary 
onstants plug in the boundary 
onditions

x(0) = 0 and x(1) = 1. That gives A + B = 0 and Ae

2 + B∕e2 = 1 with solution

A = 1∕(e2 − e

−2), B = −A.

x(t) =
e

2t − e

−2t

e

2 − e

−2
or x(t) =

sinh 2t

sinh 2

We'll leave it to you to argue that this must be a minimum rather than a maximum.

A Shortcut for Functions That Involve y

′ But Not y
Suppose you want to optimize the integral ∫ (x∕y′)dx.

f =
x

y

′
→

)f

)y′
= −

x

y

′2
,

)f

)y
= 0

So the Euler-Lagrange equation promises that any stationary solutions must �t the following differ-

ential equation.

d

dx

(

−
x

y

′2

)

= 0

If you take that derivative using the quotient rule you get (−y′2 + 2xy

′
y

′′)∕y′4 = 0 and brew another


up of espresso to get you through a long night. But there is a short
ut. If d∕dx<something> is zero,

then the <something>must be a 
onstant. That leads us to a �rst order differential equation that we


an easily solve.

−
x

y

′2
= C → y

′ = C

√
x → y = Ax

3∕2 + B

(We de�ned A = 2C∕3 to simplify the �nal answer.) Take a moment to 
onvin
e yourself that you


an use this short
ut any time the obje
tive fun
tion has no expli
it y-dependen
e.

There is also a short
ut for simplifying problems that involve yand y

′
but not x. See Problem 14.60.
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And Now, Back to Our Cone
Equation 14.2.1 gives the distan
e along any 
urve �(z) on the 
one z2 = x

2 + y

2

.

s = ∫
z

B

z

A

√
2 + z

2�′2
dz

Our goal is to �nd the 
urve that minimizes this integral. Re
ognizing a variational problem, we

begin by �nding a few derivatives.

f =
√
2 + z

2�′2
→

)f

)�′
=

z

2�′

√
2 + z

2�′2
,

)f

)�
= 0

Did you wonder, when we �rst wrote Equation 14.2.1, why we represented our 
urve as �(z) instead

of z(�)? The reasonwas that our integrand,whi
h in its original formwas

√
2 dz

2 + z

2

d�2

, expli
itly


ontained a z but no �. When solving for a �(z) fun
tion with no � in the integrand we 
an use the

short
ut des
ribed above: rather than solving (d∕dx)()f∕)�′) = 0 dire
tly, we set )f ∕)�′
equal to a


onstant C. With a bit of algebra we 
an solve for �′
.

�′ =

√
2C

z

√
z

2 − C

2

This looks ugly but with the substitution C = z sin � (or a 
omputer) you 
an get pretty qui
kly to

the solution.

�(z) =
√
2 sin

−1

(
C

z

)

+ D

Having solved for a �(z) fun
tion to get the solution easily, it's easier to work with if we now invert

it.

z(�) =
A

sin

(
�∕

√
2 + B

)

The 
onstants A and B 
an be 
hosen to 
onne
t any two arbitrary points on the 
one. The pi
ture

below shows this 
urve for two representative endpoints. As we suspe
ted it might, it dips down in

the middle for the shortest journey.

14.2.3 Problems: Variational Problems and the Euler-Lagrange

Equation

14.1 Walk-Through: The Euler-Lagrange Equation.

In this problem you will �nd the fun
tion y(x)

that minimizes the integral ∫ 2

1

f (y, y′, x)dx

where f = y

2∕x + xy

′2
, subje
t to the bound-

ary 
onditions y(1) = 0, y(2) = 1.

(a) Cal
ulate )f ∕)y. Remember that this is a partial

derivative so you will treat x and y

′
as 
onstants.

(b) Cal
ulate )f ∕)y′. (This time treat x

and y as 
onstants.)
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(
) Cal
ulate (d∕dx)()f ∕)y′). This is a total deriva-

tive, so you will treat x, y and y

′
as variables,

remembering that the derivative of y

′
is y

′′
.

(d) Plug your formulas into the Euler-Lagrange

equation to get a differential equation for y(x).

(e) Find the general solution to that equation. Hint:

Try guessing a solution of the form y = x

p

.

(f) Use the boundary 
onditions to solve for the

arbitrary 
onstants and �nd y(x).

14.2 [This problem depends on Problem 14.1.℄

In Parts (a)�(d), evaluate ∫ (y2∕x + xy

′2)dx

along the given 
urve from (1, 0) to (2, 1). For

instan
e, if we gave you y = (x3 − 1)∕7, you

would write y

′ = 3x

2∕7 and then:

∫
2

1

([
(x3 − 1)∕7

]
2

x

+ x

(
3x

2

7

)
2

)

dx ≈ 2.062

You should express all your answers as

de
imals, as we did here.

(a) y = x − 1

(b) y = (x − 1)2

(
) y = 2

x−1 − 1

(d) y = (ln x)∕(ln 2)

(e) Cal
ulate the same integral along the path

you 
al
ulated in Problem 14.1. Show that

this path does indeed minimize the integral,

at least among these six 
hoi
es.

(f) Find one more fun
tion that 
onne
ts

these two points and evaluate the inte-

gral along that fun
tion.

14.3 [This problem depends on the Dis
overy Exer
ise

(Se
tion 14.2.1)℄ In the Dis
overy Exer
ise

you integrated y

′2 + 10xy from (0, 0) to (1, 1)

along several different 
urves.

(a) Use the Euler-Lagrange equation to show that

the 
urve that minimizes this integral between

any two points is y = (5∕6)x3 + C

1

x + C

2

.

(b) Find the 
urve that minimizes this inte-

gral between (0, 0) and (1, 1).

(
) Compute the integral along that 
urve and show

that your result is lower than any of the inte-

grals you found in the Dis
overy Exer
ise.

(d) Sket
h the 
urve. Does it roughly mat
h the pre-

di
tion you made in the original Exer
ise?

In Problems 14.4�14.15 �nd the fun
tion y(x) that is a

stationary solution for the given integral. If boundary


onditions are given plug them in to solve for any

arbitrary 
onstants in your solution. If the integrand


ontains y

′
but not y 
onsider using the short
ut des
ribed

in the Explanation (Se
tion 14.2.2.)

14.4 ∫ (
y

′2 − y

2

)
dx

14.5 ∫ (
y

′2 − y

2 + 2y

)
dx

14.6 ∫ 1

0

(
y

′2 − y

)
dx, y(0) = y(1) = 0

14.7 ∫ x

(
y

′ + y

′2
)
dx

14.8 ∫ 1

0

(
y

′2 + xy

)
dx, y(0) = 0, y(1) = 1

14.9 ∫ 1

0

(1 + x)y′2dx, y(0) = 0, y(1) = 2 ln 2

14.10 ∫ (
y

′2 − 2xyy

′
)
dx

14.11 ∫ 2

0

(
y

′2 − 2xyy

′ + y

′
)
dx, y(0) = 0, y(2) = 1

14.12 ∫ �∕2

0

(
y

′2 + yy

′ − y

2

)
dx, y(0) = 0, y(�∕2) = 2

14.13 ∫ (
y

′2 + y

2 + y sin x

)
dx

14.14 ∫ (
y

′ + x

2

y

′2
)
dx

14.15 ∫ sin(y′2 + 1)dx Hint: the resulting differ-

ential equation is easier than it looks if you

think about what it's saying.

14.16 In Problem 14.2 you analyzed the fun
tion from

Problem 14.1 for a number of different paths, show-

ing that the stationary solution you found does in

fa
t represent a minimum. Choose a problem that

you solved from Problems 14.4�14.15 and do the

same kind of analysis. Choose a problem that spe
i-

�ed beginning and end points, and �nd at least three

fun
tions�in addition to the one you found as the

solution�that 
onne
t those two points. (You don't

need to have done Problem 14.2 to do this.)

14.17 In the Explanation (Se
tion 14.2.2), when we found

the shortest path between two points on the 
one z

2 =

x

2 + y

2

, we fo
used on the use of the Euler-Lagrange

equation to solve the variational problem. But setting

up that problem required �nding the length ds of a

differential step along the 
one. In this problem you

will derive that ds geometri
ally; in Problem 14.18

you will rea
h the same 
on
lusion algebrai
ally.

Note that you 
an spe
ify any arbitrary point

on this 
one by giving its 
ylindri
al 
oordinates

z and �. We therefore begin by representing an

arbitrary step ds as a 
ombination of two sepa-

rate steps: one that 
hanges z without 
hanging �,

and one that 
hanges � without 
hanging z.

(a) From the equation z

2 = x

2 + y

2

we 
an see that

this 
one makes a 45

◦
angle with the horizontal.

Explain how we know that. (This fa
t is going

to be important for both the dz and d� steps.)
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(b) Move in a diagonal line dire
tly up the


one, 
hanging z but not �. If your z-


oordinate goes up by dz, how long is the

diagonal line you have traversed?

(
) Nowmove in a 
ir
le around the 
one, 
hang-

ing � but not z. If your �-
oordinate advan
es

by d�, how long is the ar
 you have traversed?

You may �nd it easiest to start by writing your

answer in terms of �, the radius of the 
one at

whatever height you're at. If you do you should

go on to express � as a fun
tion of z so your

�nal answer only depends on z and d�.

(d) To �nd the length of an arbitrary move ds,

involving 
hanges to both z and �, use the

Pythagorean theorem to put together your

two previous results. You 
an 
he
k your

answer by making sure it mat
hes the for-

mula we used in the Explanation.

14.18 In the Explanation (Se
tion 14.2.2), when we found

the shortest path between two points on the 
one z

2 =

x

2 + y

2

, we fo
used on the use of the Euler-Lagrange

equation to solve the variational problem. But set-

ting up that problem required �nding the length ds of

a differential step along the 
one. In Problem 14.17

you derived that ds geometri
ally; in this problem

you will rea
h the same 
on
lusion algebrai
ally.

(a) Write the distan
e ds for an arbitrary move in 3D

in terms of the Cartesian intervals dx, dy, and dz.

(b) Write formulas for the Cartesian 
oordi-

nates x, y, and z in terms of the 
ylindri-


al 
oordinates �, �, and z.

(
) The 
one in that problem was de�ned by the

relationship z

2 = x

2 + y

2

. Write that equation

as a relationship between z and � without

any x or y in it. Use that relationship to elim-

inate � from your answers to Part (b).

(d) Use your answers to Part (
) to write dx and

dy in terms of d� and dz. (These expressions

will only be valid for intervals along the 
one

be
ause you used the formula for the 
one when

you eliminated � from the equations.)

(e) Plug these answers into your expression

for ds and simplify. You 
an 
he
k your

answer by making sure it mat
hes the for-

mula we used in the Explanation.

Problems 14.19�14.22 involve �nding the shortest

distan
e between two points on various surfa
es. (This is


alled the �Geodesi
 problem.�) We provide a model for

this pro
ess in the Explanation, using a 
one as the surfa
e.

∙ Choose an appropriate 
oordinate system where you


an use two variables to spe
ify a point on the surfa
e.

∙ Find the distan
e of a step ds along the surfa
e in the


oordinate systemyou are using.You 
an approa
h this

geometri
ally as in Problem 14.17, or algebrai
ally as

in Problem 14.18.

∙ Rewrite ds in terms of only one 
oordinate on a 
urve.

∙ You 
an now express the Geodesi
 problem as a vari-

ational problem. Solve it.

14.19 Prove that the shortest path between two points

on the xy plane is a straight line.

14.20 Find the shortest distan
e between two points

on the 
one z

2 = 4(x2 + y

2) (for z ≥ 0).

14.21 Find a formula for the shortest path between

two points on the 
ylinder de�ned by x

2 + y

2 =

R

2

. Des
ribe the resulting shape.

14.22 Find a formula for the shortest path between two

points on the sphere x

2 + y

2 + z

2 = R

2

. Hint:

parametrize your path as �(�)where � and � are

the angles in spheri
al 
oordinates. You should

be able to get a �rst-order differential equation

for your path with an arbitrary 
onstant on the

right. If you 
hoose your z-axis to pass through

the initial point on your path then you 
an argue

that the 
onstant must be zero. That should redu
e

the equation to something you 
an solve.

14.23 A Soap BubbleConsider a 
urve 
onne
ting two

points. The fun
tion y(x) that minimizes the surfa
e

area you get when you rotate that 
urve around the

y-axis is the shape a soap bubble between two rings

would form in the absen
e of gravity. A small seg-

ment of the 
urve has length ds =
√
dx

2 + dy

2

; when

rotated about the y-axis this segment sweeps out a


ylindri
al area dA = 2�x ds = 2�x
√
dx

2 + dy

2

.

(a) Find the fun
tion y(x) that minimizes this area.

Your answer will have two arbitrary 
onstants.

Hint: you should end up redu
ing the prob-

lem to an integral. You 
an solve that integral

on a 
omputer or look it up in a table.

(b) Solve numeri
ally for the 
onstants

if the 
urve 
onne
ts (1, 1) and (2, 0).

Plot the resulting path.

(
) Is the 
urve you plotted straight, 
on
ave up, or


on
ave down? Explain why that makes sense

physi
ally. (If you didn't do the 
omputer part

you should still be able to do this part by pre-

di
ting what the 
urve should look like.)

14.24 Exploration: Fermat's Prin
iple The speed of light

depends on what medium it is traveling through, with


 (the speed of light in a va
uum) being the fastest

possible speed. When light moves from one medium

to another it 
hanges both speed and dire
tion.

Consider a light beam that travels from the origin

to the point (2, 2). In the following s
enarios you

will 
al
ulate the path this light beam takes. Your

guide will be �Fermat's Prin
iple,� whi
h tells us in
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these 
ases that the light will follow the fastest path

possible from its starting to its ending position.

(a) First, assume the entire xy plane is a va
-

uum, so the light travels at 
. What path will

the beam take from (0, 0) to (2, 2)? You 
an

�gure this out with no 
al
ulations.

Now assume that from x = 0 to x = 1 is a va
uum,

but from x = 1 to x = 2 is a medium in whi
h light

travels at 0.9
. The beam will travel in a straight line

path to x = 1, and then 
hange dire
tion and follow

a different straight line to rea
h the point (2, 2).

(b) Will the light rea
h x = 1 at exa
tly the point

(1, 1), or slightly below that point, or slightly

above it? Explain qualitatively how your

answer follows from Fermat's prin
iple.

(
) Write a fun
tion for the total time it takes

the light beam to 
omplete its journey.

The variable in this fun
tion will be the y-

position of the light beam when x = 1. (A

drawing will really help here.)

(d) You 
an �nd the minimum time by setting dt∕dy

equal to zero. Write the resulting equation. You


an simplify it a bit, but not a whole lot.

(e) Solve the equation. If your answer

does not agree with your answer to

Part (b), �x one of them.

Now assume that from x = 0 to x = 2 is a

medium that gradually 
hanges, su
h that the

speed of light is v = 
(1 − x∕10).

(f) Will the light follow a straight line from (0, 0)

to (2, 2), or a 
on
ave up 
urve, or a 
on
ave

down 
urve? Explain qualitatively how your

solution follows from Fermat's prin
iple.

(g) Write a formula for the distan
e ds the light

travels in an in�nitesimal step in its journey.

Your formula will depend on dx, the horizon-

tal distan
e travelled, and on the fun
tion y(x)

for its path. Use that result to 
al
ulate the time

dt su
h a journey makes. Then use that result

and 
al
ulus of variations to set up a differen-

tial equation for the 
urve y(x).Hint:You might

end up with a se
ond order ODE, but you 
an

end up with a �rst order, whi
h is preferable.

(h) Solve the differential equation

using the boundary 
onditions y(0) = 0,

y(2) = 2 to �nd the path y(x) taken by the

light. Sket
h the fun
tion and make sure its

shape mat
hes your answer to Part (f). (You


an just ask a 
omputer to plot it and then


opy the sket
h into your answer.)

14.25 Exploration: The Bra
histo
hroneA bead slides

down a fri
tionless tra
k under the for
e of grav-

ity, falling from rest at (0, 0) to arrive at (x
f

, y
f

)

where y

f

< 0. The �bra
histo
hrone� is de�ned

as the 
urve y(x) that will get the bead to its �nal

destination in the shortest possible time.

(a) A straight line would be the shortest path,

but it wouldn't be the fastest one. Explain

why not and sket
h qualitatively what the

bra
histo
rone 
urve should look like.

(b) Using 
onservation of energy, �nd the speed of

the bead at a point (x, y) along the tra
k.

(
) In a short interval of time the bead travels a

distan
e ds =
√
dx

2 + dy

2

, requiring a time

of dt = ds∕v. You need to express the time

dt in one of two ways: as a fun
tion of x, y,

y

′(x), and dx, or as a fun
tion of x, y, x′(y),

and dy. Explain why we prefer the latter.

(d) Write an integral that represents the total time

for the bead to fall, and use the te
hniques

of this se
tion to set up a �rst order differen-

tial equation for the optimal 
urve x(y).

(e) Show that the following parametri
 
urve (where

k is any 
onstant) is a solution to your differen-

tial equation: x = k(� − sin �), y = k(
os � − 1).

Hint: for a parametri
ally expressed 
urve you


an 
al
ulate dx∕dy as (dx∕d�)∕(dy∕d�).

A 
urve with this parametri
 representation is


alled a �
y
loid,� so you just proved that the

bra
histo
hrone 
urve is a 
y
loid.

14.26 [This problem depends on Problem 14.25.℄

Consider a parti
le sliding from the origin

to the point (1,−1). Assume all quantities

are in SI units and take g = 10.

(a) Cal
ulate the 
onstant C for the bra
his-

to
hrone 
urve 
onne
ting those points.

Plot the resulting 
urve.

(b) Cal
ulate the time required for a parti-


le to slide along that 
urve.

(
) Compare that time to the time for a par-

ti
le to slide along a straight line 
on-

ne
ting the same two points.
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14.3 Why the Euler-Lagrange Equation Works

As with many formulas, you 
an use the Euler-Lagrange equation without ever knowing where it


omes from. But going through the derivation on
e or twi
e, even if you 
an't reprodu
e it years

later, gives you a deeper appre
iation for the nature of the problem you're solving.

14.3.1 Explanation: Why the Euler-Lagrange Equation Works

You know that every lo
al minimum or maximum of a one-variable fun
tion f (x) must o

ur at a

point where f

′(x) is zero.3 Can you explain why? A drawing 
an be very 
onvin
ing, but we need

something more mathemati
al.

Here is one way you 
an frame the argument. Suppose we 
laim that f (x) rea
hes a minimum

at a parti
ular value x = x

0

. That means by de�nition that 
hanging x by a small amount�in either

dire
tion�will not 
ause f to de
rease.

We use dx to represent that small 
hange in x, and dy = f

′(x)dx to represent the resulting 
hange

in the fun
tion f . With that notation, the argument goes like this. If f

′(x
0

) is negative, then in
reasing

x (moving to the right) will 
ause f to de
rease. Conversely, if f

′(x
0

) is positive, then de
reasing

x will 
ause f to de
rease. In neither 
ase have you found a minimum value for the fun
tion! We


on
lude that f 
an only attain a minimum at x

0

if f

′(x
0

) = 0.

Before you read further, try the following exer
ise: rewrite the previous two paragraphs for a

variational problem. The goal here is not to arrive at the �nal answer (the Euler-Lagrange equation),

but to frame the question properly. One 
autionary note: in the above dis
ussion, y and f both

represented the same fun
tion. But throughout the rest of this se
tion, y will represent a 
urve and f

will represent a fun
tion that is de�ned along that 
urve.

�pause while you write�

Hopefully you startedwith something like this: �Supposewe 
laim that I = ∫ f (y, y′, x)dx rea
hes

a minimum along a parti
ular 
urve y(x). That means by de�nition that 
hanging y(x) by a small

amount�in any possible way�will not 
ause I to de
rease.�

If you went on from there to dis
uss dy and df ∕dy, you're doing great. But later you run into

some 
onfusion be
ause two different kinds of dy show up in the same argument. We're going to

introdu
e some new notation to distinguish between them.

1. Good old dymeans �I am moving along a 
urve by a small dx (moving from left to right if dx

is positive) and seeing the resulting 
hange in y.� So dy∕dx is the slope of the 
urve as always.

2. The new �y(x) means �At ea
h x-value I am 
hanging the value of y by 
hanging the 
urve

itself.� That 
auses a 
hange �I , and �nding a formula for that 
hange is going to be one of

our main tasks in this se
tion.

3

or is unde�ned, but we will 
on�ne our dis
ussion to differentiable fun
tions
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Don't 
onfuse this new � with the old ) for a partial derivative, whi
h we will also of 
ourse be

using!

With that notation in pla
e, the rest of the argument looks mu
h the same as it did the �rst time. If

a parti
ular in�nitesimal 
hange �y(x) results in a negative �I then that 
hange will de
rease I , so we


an't be at a minimum.And if it results in a positive �I then the opposite 
hange−�y(x)will de
rease

I , so we still 
an't be at a minimum. The optimum 
urve y(x) must therefore have the property that

any tiny 
hange �y(x) away from it will give �I = 0.

You 
an make these de�nitions more rigorous by de�ning �y(x) = ��(x)where � is a number and

�(x) is an arbitrary fun
tion. Then we require dI∕d� = 0 for all smooth fun
tions �(x) subje
t to

the 
ondition that � = 0 at both boundaries. That last 
ondition o

urs be
ause y(x) must meet the

given boundary 
onditions so it 
an't vary at the boundaries. It's straightforward to rewrite all our

derivations in this se
tion in terms of � and � but we �nd the �y notation easier to follow.

What we are going to do for the rest of this se
tion is try to 
onvin
e you that �I = 0 for any

small variation �y(x) if and only if )f ∕)y − (d∕dx)()f∕)y′) = 0. In fa
t we're going to make three

different arguments: �rst a visual hand-wave, then a derivation involving integration by parts, and

�nally (in Problem 14.31) a derivation based on Riemann sums. But make sure you �rst understand

what we've presented so far: what �I represents and why it has to be zero for any small �y(x) if y(x)

is a stationary solution. Without that, the rest of this se
tion won't mean mu
h.

A Hand-Waving Argument

y(x) (bla
k) and y + �y (blue)

We begin with a 
urve y(x) and a fun
tion f (y, y′, x) de�ned along that 
urve. Then we 
hange y(x)

by a small �y at a parti
ular x = x




. Of 
ourse, 
hanging y(x) at only that point would make the 
urve

dis
ontinuous, so we don't do that; we bend the 
urve up, as shown above. Then we ask the question,

how does this 
hange affe
t the value of our integral I = ∫ f (y′, y, x)dx?

Most dire
tly it 
hanges y. If )f ∕)y is positive, that signi�es that in
reasing y at a parti
ular

x-value will in
rease f at that value, thus in
reasing the total integral I . If )f ∕)y is negative then this

effe
t would de
rease I .

But our bump in the 
urve also 
hanges y

′
. Spe
i�
ally, y

′
in
reases to the left of x




and de
reases

to the right of x




. If )f ∕)y′ is the same on both sides of x




then the net effe
t of 
hanging y

′
will


an
el out. On the other hand, if )f ∕)y′ is larger on the right than on the left, then the effe
t of a

positive �y will be to de
rease ∫ f dx. (Make sure you see that.) So the 
hange in the integral will

be negative if (d∕dx)()f∕)y′) is positive, and vi
e versa.

Putting all this together it at least seems plausible that the total 
hange �I from a small 
hange

�y(x) will look something like ()f ∕)y) − (d∕dx)()f∕)y′). Of 
ourse this is not a proof. There 
ould

be other numeri
al fa
tors, for example. But this hopefully gives you some intuition for why those

parti
ular two terms appear in the Euler-Lagrange equation and why they have the signs they do.

This argument 
an be made more rigorous by 
onsidering the integral as a Riemann sum and then

taking the limit as dx → 0. See Problem 14.31.

As a �nal note, remember that the above argument 
entered on a 
hange at a parti
ular x = x




. A

minimum means that no 
hange to y(x) anywhere will 
ause I to de
rease. So Euler-Lagrange is a

differential equation, requiring that ()f ∕)y) − (d∕dx)()f∕)y′) = 0 everywhere along the 
urve.

A Real Derivation Using Integration by Parts
We begin on
e againwith the following question.We have evaluated I = ∫ f (y, y′, x)dx along a given


urve y(x). Nowwe introdu
e a 
hange �y(x) to the 
urve.What effe
t does that have on the integral?
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Consider the f -value at one parti
ular x-value. Here y has gone up by some parti
ular �y, and y′

has gone up by �y′. We 
an 
ompute the resulting 
hange in f from the 
hain rule.

�f =
)f

)y
�y +

)f

)y′
�y′

That 
al
ulation represents the 
hange in f at one parti
ular x-value. To �nd the total 
hange in I ,

we add up the 
hanges along the 
urve.

�I = ∫
x

f

x

0

(
)f

)y
�y +

)f

)y′
�y′

)

dx

It's painfully easy to get lost in the symbols, so keep asking yourself what all the pie
es mean.

For instan
e, 
onsider the se
ond term in that integrand. )f ∕)y′ asks the question�at a parti
ular

x-value��if I in
reased the slope of my 
urve, all other things being equal, how fast would that

in
rease the fun
tion f ?�We multiply that by �y′: �whenwe 
hanged our old 
urve to our new 
urve,

howmu
h did the slope 
hange at this point?� The produ
t gives us part (but not all) of the 
hange in

f 
aused by 
hanging the 
urve at this parti
ular x-value.When we add the 
ontribution represented

by the �rst term and integrate a
ross the entire domain, we get the total 
hange in I .

We next repla
e �y′ with (d∕dx)(�y). That substitution is not entirely obvious; think about it for

a moment, remembering that �y′ means the 
hange in the slope 
aused by �y. See Problem 14.27.

�I = ∫
x

f

x

0

(
)f

)y
�y +

)f

)y′
d

dx

�y

)

dx (14.3.1)

That substitution allows us to use integration by parts on the se
ond term in the integrand.

u =
)f

)y′
dv =

(
d

dx

�y

)
dx

du =

(
d

dx

)f

)y′

)

dx v = �y

∫
)f

)y′

(
d

dx

�y

)
dx =

)f

)y′
�y − ∫ �y

(
d

dx

)f

)y′

)

dx

Plug that ba
k into Equation 14.3.1 and rearrange.

�I =
)f

)y′
�y
|
|
||

x

f

x

0

+ ∫
x

f

x

0

�y

(
)f

)y
−

d

dx

)f

)y′

)

dx

Remember that a variational problem �xes the endpoints at y(x
0

) = y

0

and y(x
f

) = y

f

. That means

that any variation �y that you 
onsider has to go to zero at both ends, so the term outside the integral

is zero.

Now it remains to say what must be true for �I to equal zero. In general an integral 
an equal

zero without the integrand being zero everywhere. But in this 
ase we have to be sure that there

is no possible variation �y(x) for whi
h �I ≠ 0. The only way ∫ �y<stuff>dx 
an be zero for all

possible fun
tions �y is if <stuff> equals zero everywhere. (This is the mathemati
al equivalent of

the argument we made at the end of our hand-wave: the integral I 
an only rea
h a minimum if no


hange in y(x), anywhere along the 
urve, 
an result in a de
rease in f .)

We 
on
lude on
e again that the stationary solutions o

ur where ()f ∕)y) − (d∕dx)()f∕)y′) = 0.
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14.3.2 Problems: Why the Euler-Lagrange Equation Works

14.27 Our derivation of the Euler-Langrange equation

in
luded a step in whi
h we repla
ed �y′

with (d∕dx)(�y). In this problem you will


onsider that repla
ement.

(a) Draw a fun
tion y(x). (Make it reasonably sim-

ple, but not as simple as a line.) Now draw a se
-

ond fun
tion y + �ywhere �y is the same for all

x-values.What is (d∕dx)(�y)�the rate of 
hange

of �y as you move from left to right�in this


ase?What is �y′�the 
hange of the slope from

the �rst fun
tion to the se
ond�in this 
ase?

(b) Redraw your same y(x) fun
tion. Then draw

a fun
tion y + �y where �y starts at zero on

the left, and 
ontinually in
reases as you go

to the right. Is (d∕dx)(�y) positive or nega-

tive, and how 
an you tell from your draw-

ing? Is �y′ positive or negative, and how


an you tell from your drawing?

(
) Explain in your own words why, in gen-

eral, �y′ = (d∕dx)(�y).

14.28 The Explanation (Se
tion 14.3.1) presented a deriva-

tion using integration by parts for the stationary solu-

tions to the problem of extremizing ∫ f (y, y′, x)dx

subje
t to �xed boundary 
onditions at the two ends.

The result was the Euler-Lagrange equation.

(a) Following a similar argument, derive an equation

for the stationary solutions to the problem of

extremizing ∫ f (y, y′, y′′, x)dx subje
t to �xed

boundary 
onditions on y and y

′
at the two ends.

(b) Whi
h step in your derivation would not

have been valid if we had only spe
i�ed y at

the boundaries instead of y and y

′
?

14.29 The Explanation (Se
tion 14.3.1) presented a

derivation using integration by parts for the sta-

tionary solutions to the problem of extremizing

∫ f (y, y′, x)dx subje
t to �xed boundary 
ondi-

tions at the two ends. The result was the Euler-

Lagrange equation. Generalize this argument to

derive the Euler-Lagrange equations for the 
ase of

two 
urves, ∫ f (y, y′, z, z′, x), where y and z are both

fun
tions of x with spe
i�ed values at the bound-

aries. The formulas you derive in this problem will

be used in many problems in Se
tion 14.4.

14.30 [This problem depends on Problem 14.29.℄

(a) Write a pair of 
oupled differential equations

for the stationary solutions that minimize

the integral ∫ (z′2 + 2y

′2 + 3yz)dt.

(b) If you've studied linear algebra you might

know how to solve those equations, but

here we'll point you towards one solution:

y(t) = sin(kt), z(t) = −
√
2 sin(kt). Find the

value of k for whi
h these represent a station-

ary solution to the original integral.

14.31 In this problem you'll derive the Euler-Lagrange

equation by rewriting I = ∫ f (y, y′, x)dx as a

Riemann sum I = lim

Δx→0

RΔx, where

R =

N−1∑

i=0

f [y(x
i

), y′(x
i

), x
i

]

with

x

i

= x

0

+ iΔx, N =
x

f

− x

0

Δx

First you'll �nd the 
riti
al points for R, and in

the limitΔx → 0 these will be
omes the station-

ary solutions for I . Throughout the problem we'll

use y

i

and y

′
i

to mean y and y

′
evaluated at x

i

.

(a) For a �nite N this is a multivariate 
al
u-

lus optimization, not a 
al
ulus of variations

problem. What are the variables that you

are varying in order to �nd a 
riti
al point

for R? Hint: there are N of them.

(b) Consider the effe
t of in
reasing y

i

by an

amount �y while leaving all of the other

y values 
onstant. Ignoring the effe
t this

has on y

′
for the moment, how mu
h does

this 
hange R? Your answer will depend on

)f ∕)y
i

, meaning the partial derivative of f with

respe
t to y, evaluated at the point x

i

.

Now 
onsider the effe
t that in
reasing y

i

has

on y

′
. In the Riemann sum we 
an approxi-

mate y

′
i

with [y
i+1 − y

i−1]∕(2Δx).

(
) Whi
h two y

′
values are affe
ted when

you in
rease y

i

by �y?

(d) Figure out how mu
h ea
h of those two val-

ues are affe
ted and put them together to

�nd the total 
hange in R that o

urs be
ause

of y

′
when you in
rease y

i

by �y.

(e) In the limitΔx → 0 your answer to Part (d)


an be written as �y times a derivative with

respe
t to x. Rewrite it that way. Hint: look

at how we wrote y

′
i

as a guide.

(f) Combine your answers to Parts (b)�(d)

to �nd the total 
hange in R resulting

from in
reasing y

i

by �y.

(g) A 
riti
al point for a multivariate fun
tion o

urs

at a point where in�nitesimal 
hanges in any of

the variables leads to zero 
hange in the fun
tion.

You just 
onsidered the effe
t of a 
hange in y

i

on

R. If you assume that �R resulting from a 
hange

in any of the y

i

equals zero, your answer be
omes

a differential equation for y. Write that equation.
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Note that this derivation isn't quite 
omplete

be
ause the formula we used for y

′
isn't valid

at the two endpoints. Sin
e �y must be zero at

the endpoints to satisfy the boundary 
ondi-

tions, however, the derivation is valid.

14.4 Spe
ial Appli
ation: Lagrangian Me
hani
s

A 
entury after Newton presented his three laws of motion, Joseph-Louis Lagrange introdu
ed an

alternative. Lagrange's approa
h and Newton's give the same predi
tion in any situation, and you


an use either one to derive the other. But �Lagrangian me
hani
s� starts from a different set of

postulates and, in many 
ases, is more 
onvenient for 
al
ulations than F = ma.

Lagrangian me
hani
s offers parti
ular bene�ts when all the for
es involved are �
onservative�

(see Chapter 8). In su
h a 
ase you 
an des
ribe a potential energy for every possible 
on�guration

of parti
les, whi
h is equivalent to spe
ifying all the relevant for
e laws. In this se
tion we will


onsider only 
onservative for
es.

The Principle of Least Action

To solve for the motion of a mass on an ideal spring, you might write the differential equation that

representsNewton's se
ond law:F = mẍ = −kx. (We're going to use the dot notation for time deriva-

tives a lot in this se
tion. Remember that ẍmeans d

2

x∕dt2.) Alternatively, be
ause the for
es involved

are 
onservative, you might write the differential equation that represents 
onservation of energy:

KE + U = (1∕2)mẋ2 + (1∕2)kx2 = C. These two approa
hes are based on fundamentally different

premises, but they lead to the same �nal solution: x(t) = A sin

(√
k∕m t

)
+ B 
os

(√
k∕m t

)
. You


hoose one approa
h or the other based on mathemati
al 
onvenien
e.

Lagrangian me
hani
s starts from a premise that is quite different from either F = ma or 
onser-

vation of energy.

The Equation of Motion in Lagrangian Me
hani
s

1. The �Lagrangian� of an obje
t is its kineti
 energy minus its potential energy: L = KE − U.

2. �A
tion� is the time integral of an obje
t'sLagrangian as itmoves along a given traje
tory:S = ∫ L dt.

3. The �Prin
iple of Least A
tion� says that in moving from position x(t
0

) = x

0

to position x(t
f

) = x

f

the obje
t will follow the traje
tory x(t) that minimizes the a
tion.

a

Find the traje
tory that minimizes an integral? Hey, it's a variational problem! We therefore approa
h it with

the Euler-Lagrange formula, this time applied to a fun
tion L(x, ẋ, t) instead of our old f (y, y′, x).

d

dt

(
)L

)ẋ

)
−

)L

)x
= 0

a

Stri
tly speaking the prin
iple says that the traje
tory will be a stationary solution, whi
h 
ould be a minimum or a

maximum. In pra
ti
e it's almost always a minimum. The prin
iple is sometimes 
alled the �Prin
iple of Stationary

A
tion.� It's also sometimes 
alled �Hamilton's Prin
iple.�
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We 
an illustrate the use of this equation using the same example we solved with Newtonian

methods above.

EXAMPLE

An Obje
t on a Spring

Problem:

Find the position x(t) of a mass m atta
hed to an ideal spring with spring 
onstant k.

Solution:

The potential energy of a mass on an ideal spring is U = (1∕2)kx2. The Lagrangian is

KE − U.

L =
1

2

mẋ

2 −
1

2

kx

2

→

)L

)ẋ
= mẋ,

d

dt

(
)L

)ẋ

)
= mẍ,

)L

)x
= −kx

So the Euler-Lagrange formula in this 
ase be
omes mẍ + kx = 0. This is the same

differential equation we got from F = ma so of 
ourse it leads to the same solution,

x = A sin

(√
k∕m t

)
+ B 
os

(√
k∕m t

)
.

Generalized Coordinates
The example above led to the same equationwe got fromNewton's se
ond law, only with more work

on our part. You'll show in Problem 14.32 that it's simple to derive Newton's se
ond law from the

prin
iple of least a
tion. So, why are we doing this?

There are a number of reasons why Lagrangian me
hani
s is useful. One is that it generalizes to

systems where Newton's laws don't apply. You 
an write down Lagrangians for relativisti
 parti
les,

for �elds, or even for the 
urvature of spa
etime in general relativity, and the equations of motion in

all those 
ases follow from the prin
iple of least a
tion. The postulates of quantum �eld theory are

most easily stated in terms of Lagrangians (although they are not the same as the prin
iple of least

a
tion, whi
h doesn't hold for quantum systems).

For 
lassi
al systems of obje
ts, what makes Lagrangian me
hani
s useful is that you 
an write

the Lagrangian in terms of �generalized 
oordinates��any numbers that des
ribe the state of the

system�not just Cartesian 
oordinates. As long as you 
an express the kineti
 and potential energy

of your system in terms of your generalized 
oordinates and their time derivatives (sometimes 
alled

�generalized velo
ities�), you 
an write the Lagrangian and solve the Euler-Lagrange equations. In

many 
ases this makes 
ompli
ated problems mu
h easier than they would be with Newton's laws

4

.

4

You 
an write Newton's laws for any set of generalized 
oordinates, but the equation of motion will not in general be F = ma.

The beauty of Lagrangian me
hani
s is that the Euler-Lagrange equation in the form we've written it applies no matter what


oordinates you use.
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EXAMPLE

A Bead on a Rotating Rod

Problem:

A bead of mass m is pla
ed on a fri
tionless rod that is rotating horizontally at a 
onstant

angular speed !. Find the distan
e �(t) of the bead from the 
enter of the rotation.

Solution:

We will express this situation in polar 
oordinates,

b

be
ause the problem determines �(t)

expli
itly and asks for �(t). Be
ause the rotation is horizontal there is no potential energy.

The kineti
 energy is (1∕2)mv2. (Sin
e the motion of the rod is �xed by some external for
e

we just 
onsider our system to be the bead.) The radial 
omponent of velo
ity is �̇. The

tangential 
omponent is perhaps less obvious, but if you remember that ! = �̇ is the angular

velo
ity you 
an 
onvert that to tangential velo
ity with the formula v

tangential

= !�. That

leads to the Lagrangian L = (1∕2)m�̇2 + (1∕2)m!2�2. (You 
ould also derive that se
ond

term from the formula for kineti
 energy of rotation, KE = (1∕2)I!2

, where the moment of

inertia is I = m�2.)

dL

d�̇
= m�̇

d

dt

(
dL

d�̇

)

= m�̈

dL

d�
= m!2�

m�̈ − m!2� = 0

The solution is �(t) = Ae

!t + Be

−!t

. Unless the initial 
onditions are perfe
tly �ne-tuned to

set A = 0 the �rst term will 
ome to dominate and the bead will move away from the origin

exponentially with time.




As a �nal note, we know that ! has units of one over time, so the arguments of the

exponentials are unitless, as they should be. (When one of the authors �rst solved this

problem he made a mistake and got e

−!2

t

, but immediately spotted the error when he


he
ked units.)

b

You may be used to using r and � for polar 
oordinates. We use the letters � and � but they mean the same thing:

distan
e from the origin and angle going 
ounter
lo
kwise from the positive x axis.




If you're a �rst or se
ond year physi
s student, this is 
aused by intera
tions between the bead and the rod be
ause

there is no su
h thing as 
entrifugal for
e. If you are a junior physi
s major or beyond, it's just due to the 
entrifugal

for
e. http://xk
d.
om/123
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The example above applies the Euler-Lagrange equation in a simple setting; the example below

demonstrates more advan
ed te
hniques that you will need in many of the problems. Note three

differen
es in parti
ular.

1. The 
hoi
e of 
oordinates was obvious in the previous example. The following example better

illustrates how the 
hoi
e of 
oordinates 
an arise from the 
onstraints inherent in the situation.

2. We wrote down the generalized velo
ities in the previous example with some arguments from

introdu
tory physi
s. Below we derive our velo
ities from the equations that 
onvert from

generalized to Cartesian 
oordinates. (The se
ond approa
h always works, but the �rst is

faster and easier when you 
an do it.)

3. The example below involves minimizing an integral that depends on two fun
tions instead

of just one. In su
h 
ases you write down the Euler-Lagrange equation separately for ea
h

fun
tion. How you do that is demonstrated in our solution; why you 
an do that is derived in

Problem 14.29.

EXAMPLE

A Sliding Pendulum

Problem:

A pendulum of length H and mass m is hung from a blo
k of mass M that is free to slide

horizontally, as shown below. Choose an appropriate set of generalized 
oordinates for this

system and �nd the equations of motion. (We are using H for the pendulum length so it

doesn't get 
onfused with the Lagrangian L.)

Solution:

The simplest 
hoi
e of generalized 
oordinates is the horizontal position of the blo
k, X, and

the angle � of the pendulum, whi
h we de�ne to be zero when it is straight down. It's easiest

to express the energy in terms of the Cartesian 
oordinates of the pendulum bob, x and y. The

kineti
 energy is (1∕2)MẊ

2 + (1∕2)mẋ2 + (1∕2)mẏ2 and the potential energy is mgy. (The

blo
k has no potential energy.) Next we have to relate x and y to X and � so we 
an get this

all in terms of our generalized 
oordinates.

You might wonder why we don't just use x, y, and X. That would be too many degrees of

freedom; x and y are 
onstrained by the fa
t that the bob always stays at the end of the

pendulum string. The simplest way to deal with that is to use two generalized 
oordinates

that des
ribe the motion with no additional 
onstraints required.

If we set y = 0 at the top of the pendulum then y = −H 
os �. For the x 
oordinate we need

to a

ount for the position of the blo
k: x = X + H sin �. From these we get ẏ = H(sin �)�̇

and ẋ = Ẋ + H(
os �)�̇ and from those we get the Lagrangian. (Noti
e that the potential

energy is −mgH 
os � and the Lagrangian subtra
ts the potential energy, so it shows up with

a plus sign.)

L =
1

2

MẊ

2 +
1

2

mẊ

2 + mH(
os �)Ẋ�̇ +
1

2

mH

2(
os2 �)�̇2 +
1

2

mH

2(sin2 �)�̇2 + mgH 
os �

=
1

2

(M + m)Ẋ2 + mH(
os �)Ẋ�̇ +
1

2

mH

2�̇2 + mgH 
os �
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For the most part this looks like the Lagrangian for a freely sliding system with mass M + m

plus the Lagrangian for a rotating pendulum of mass m. All of the intera
tion between the two

motions 
omes about be
ause of the se
ond term, whi
h 
ouples the two velo
ities. To see

the effe
t that has we write the Euler-Lagrange equations for both our independent variables.

)L

)Ẋ
=(M + m)Ẋ + mH(
os �)�̇

)L

)�̇
=mH(
os �)Ẋ + mH

2�̇

d

dt

(
)L

)Ẋ

)

=(M + m)Ẍ + mH(
os �)�̈
d

dt

(
)L

)�̇

)

=mH(
os �)Ẍ − mH(sin �)Ẋ�̇

− mH(sin �)�̇2 + mH

2�̈

)L

)X
=0

)L

)�
= − mH(sin �)Ẋ�̇ − mgH sin �

Plugging this into the Euler-Lagrange equations and 
an
elling some 
onstants we get the

equations of motion for the system.

(
M

m

+ 1

)
Ẍ + H(
os �)�̈ − H(sin �)�̇2 = 0

(
os �)Ẍ − (sin �)Ẋ�̇ + H�̈ + (sin �)Ẋ�̇ + g sin � = 0

As a reality 
he
k noti
e that all the terms in both equations have units of distan
e over time

squared. (It doesn't matter that the two equations have the same units as ea
h other, but if

two terms in one of the equations had different units from ea
h other we would know we'd

made a mistake.)

Of 
ourse you're not likely to be able to solve the equations of motion we just derived for the

sliding pendulum, but you 
an always ask a 
omputer to do that, numeri
ally if not analyti
ally.What

Lagrangian me
hani
s allowed you to do was go from the physi
al des
ription to a set of equations

that you 
an give to a 
omputer. See Problem 14.40.

As a �nal note we should say that you 
an still sometimes use the short
ut we explained in

Se
tion 14.2.2 for variational problems that involve ẋ but not x. If the Lagrangian for one of your

generalized 
oordinates q involves q̇ but not q itself then the Euler-Lagrange equation for that


oordinate 
an be written )L∕)q̇ = C where C is an arbitrary 
onstant. (We 
ould have used this

short
ut for X in the sliding pendulum problem above but sin
e Ẍ shows up in the other Euler-

Lagrange equation this wouldn't have made the equations any easier to work with.)

14.4.1 Problems: Lagrangian Me
hani
s

14.32 Consider a parti
le with kineti
 energy (1∕2)mẋ2

and potential energy U(x). Re
alling that

F = −dU∕dx, prove that the Euler-Lagrange

equation for the motion of the parti
le is equiv-

alent to Newton's se
ond law.

14.33 Using the equation (1∕2)mẋ2 + (1∕2)kx2 = C

and the initial 
onditions x(0) = x

0

, ẋ(0) = 0,

derive the solution x(t) for a mass on a spring

pulled out to a distan
e x

0

and released. Che
k

that your answer mat
hes the one we got.

14.34 A ball with massm travels under the in�uen
e of a


onstant gravitational for
eF = mg. Use Lagrangian

me
hani
s to write the equation of motion for this

mass, and then solve that equation to show that the

resulting motion is a quadrati
 fun
tion y(t).

14.35 A 
omet with mass m is traveling under the in�u-

en
e of Earth gravity, a for
e F = −GM
E

m∕r2.

Use Lagrangian me
hani
s to write the equation

of motion for this 
omet. You do not need to

solve the resulting differential equation.
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14.36 Amassless spring with spring 
onstant k hangs down

from the 
eiling. At the end of the spring is a massm.

(a) Use Lagrangian me
hani
s to write the equation

of motion for this mass. You do not need to solve

the resulting differential equation (although you


an, if you have gone through Chapter 1).

(b) Use Newtonian me
hani
s to write the

equation of motion for the same mass. Hope-

fully you'll get the same answer!

14.37 Use Lagrangian me
hani
s to write the equation of

motion for a pendulum 
onsisting of a ball of mass

m hung from a massless string of lengthH . You do

not need to solve the resulting differential equation.

14.38 In the example on Page 17 we derived and solved

the equations of motion for a bead on a horizontal,

rotating rod. Do the same for a bead on a rod that is

rotating verti
ally with 
onstant angular velo
ity!.

14.39 In the example on Page 17 we derived and

solved the equations of motion for a bead

on a horizontal, rotating rod.

(a) Redo the problem assuming the rod is slowing

down:! =
√
2∕t. Find the general solution �(t).

(b) Now assume that at time t = 1 the system begins,

with the bead at � = 1 with radial speed �̇ = 0.

Solve for the arbitrary 
oef�
ients and �nd �(t).

14.40 In the example on Page 18 we found the

equations of motion for a sliding pendulum. Solve

those equations to �nd the motion if the system starts

at rest with the pendulum pulled up to an angle of

�∕4. TakeH = 1 m andM∕m = 2. Have the 
om-

puter draw the blo
k and pendulum at a series of

times to show what the resulting motion looks like.

14.41 In the example on Page 18 we found the equations

of motion for a sliding pendulum. Now sup-

pose the blo
k is not free to move but is pushed

ba
k and forth: X = A sin(!t).

(a) Find the Euler-Lagrange equation for �(t).

(b) For small os
illations � ≈ 0 you 
an approx-

imate this differential equation with a lin-

ear one. Make that approximation and solve

the resulting differential equation.

(
) The equations of motion you wrote in Part (a)

should des
ribe this system a

urately,

but your solution in Part (b) is only valid

if � remains small. What physi
al 
ir
um-

stan
es would make this a reasonable, or

an unreasonable, approximation?

14.42 The pi
ture below shows a ball hanging

from a massless spring that is free to swing

ba
k and forth like a pendulum.

Assume the ball has massm and the spring has spring


onstant k and equilibrium length H . Choose an

appropriate set of generalized 
oordinates and �nd

the equations of motion for the ball. You do not need

to solve the resulting differential equations.

14.43 [This problem depends on Problem 14.42.℄

Solve the equations of motion to �nd the motion if

the system starts at rest with the pendulum pulled up

to an angle of �∕4 and the spring at its equilibrium

length. Take H = 1 m, k = 5 N/m, and m = 1 kg.

Have the 
omputer draw the pendulum at a series of

times to show what the resulting motion looks like.

14.44 A uniform, solid 
ylinder of mass m and radius

r is rolling inside a hollow 
ylinder with larger

radius R. Let s be the ar
length from the small


ylinder's 
urrent position to the bottom. The

larger 
ylinder does not move.

(a) Find the Euler-Lagrange equation of motion

for s.Hint: you will need to look up (or 
al
u-

late) the moment of inertia of a uniform solid


ylinder about its axis. You do not need to

solve the resulting differential equation.

(b) What is the frequen
y of small os
il-

lations of this system?

14.45 A blo
k of massm is sliding on the inside of a fri
-

tionless, hollow, hemispheri
al bowl of radius R.

Choose an appropriate set of generalized 
oor-

dinates and write the equations of motion for the

blo
k. You do not need to solve the resulting dif-

ferential equations. (The bowl does not move.)

14.46 An iron blo
k of massm is sliding on the inside of

a fri
tionless, hollow, hemispheri
al bowl of radius

R. A uniform magneti
 �eld exerts a 
onstant for
e

F

B

î on the blo
k. (The bowl does not move.)

(a) In general magneti
 for
es 
annot be asso-


iated with a s
alar potential energy, but in



7in x 10in Felder c14.tex V3 - June 8, 2016 9:04 A.M. Page 21

14.4 |

Spe
ial Appli
ation: LagrangianMe
hani
s 21

this 
ase the magneti
 for
e 
an. Find the

potential energy for that for
e.

(b) Choose an appropriate set of generalized 
oor-

dinates and write the equations of motion

for the blo
k. You do not need to solve the

resulting differential equations.

14.47 A blo
k of massm is sliding on the inside of a fri
-

tionless, hollow 
one with the vertex at the bot-

tom, height H , and upper radius R. Choose an

appropriate set of generalized 
oordinates and

write the equations of motion for the blo
k.

14.48 A pendulum of length H is suspended from a

point that is being moved about a verti
al 
ir
le of

radius Rwith angular speed !. Find the equation

of motion for the pendulum's angle �(t).

14.49 A bead of massm is strung on a wire that is bent into

a verti
al 
ir
le of radius R. The 
ir
le is spun around

its verti
al diameter at 
onstant angular speed !.

(a) Find the equation of motion for the angle of

the bead on the wire. You do not need to solve

the resulting differential equation.

(b) Your differential equation should have two

or three equilibrium values of �, depend-

ing on the value of !. Find them, and

explain physi
ally why ea
h one is an

equilibrium point for the bead.

(
) Identify ea
h of these equilibrium angles

as stable, unstable, or stable under 
er-

tain (spe
i�ed) 
ir
umstan
es.

(d) A stable equilibrium 
an lead to os
illatory

behavior. Find the frequen
y of os
illation

around one stable equilibrium you identi�ed,

assuming these os
illations are small.

14.50 Exploration: Lagrange Multipliers If you want

to minimize the fun
tion f (x, y) subje
t to the 
on-

straint g(x, y) = 0 you have two main 
hoi
es. You


an use the 
onstraint to eliminate one variable,

write f as a single-variable fun
tion, and optimize

it. Alternatively you 
an use a Lagrange multiplier to

solve the problem in terms of both variables. (See

Chapter 4.) The same is true for variational prob-

lems. If you want to minimize ∫ f (y, y′, z, z′, x)dx

subje
t to the 
onstraint g(y, z) = 0 you 
an either

use the 
onstraint to eliminate y or z from the

problem or you 
an use the following modi�ed

form of the Euler-Lagrange equations.

d

dx

(
)f

)y′

)

−
)f

)y
− �

)g

)y
= 0

d

dx

(
)f

)z′

)

−
)f

)z
− �

)g

)z
= 0

g = 0

For most 
al
ulus of variations problems it's just as

easy to eliminate variables and not worry about �.

In Lagrangian me
hani
s, however, the new vari-

able � gives you the for
e that holds the obje
t on

the 
onstrained surfa
e. As an example, 
onsider

a blo
k sliding down a hemispheri
al mound of

radius R. The blo
k starts at rest at the top and is

given an in�nitesimal nudge to get it moving.

(a) First use a single generalized 
oordinate �

for the blo
k's angle as it slides down. Write

the Euler-Lagrange equation for �.

(b) This equation has no simple solution. At a glan
e

it looks like you 
ould reasonably approximate

the motion by repla
ing sin � with �. Explain

why this wouldn't make sense in this 
ase.

(
) Now re
onsider the problem with the gener-

alized 
oordinates r (radial distan
e) and �

and the 
onstraint r − R = 0. Find the Euler-

Lagrange equations for r and �. In writing the

kineti
 and potential energy treat r as a free vari-

able; the 
onstraint will 
ome in through �.

(d) With the 
onstraint r = R you 
an set

ṙ = r̈ = 0. Use that to get an expression for �

that only depends on �, �̇, and 
onstants.

(e) Use 
onservation of energy to express �̇ as

a fun
tion of �. Plug this into your earlier

equation to �nd � as a fun
tion of �.
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(f) The 
onstraint for
e � is in this 
ase the

normal for
e. Find � at � = 0 and explain

why your answer makes sense.

(g) Use your answer for �(�) to predi
t when

the blo
k will lose 
onta
t with the sur-

fa
e of the hemisphere.

14.5 Additional Problems

In Problems 14.51�14.53 �nd the fun
tion y(x) that is a

stationary solution for the given integral. If boundary


onditions are given plug them in to solve for any arbitrary


onstants in your solution. If the integrand 
ontains y

′
but

not y 
onsider using the short
ut des
ribed in Se
tion 14.2.

14.51 ∫ y

′2
dx, y(0) = 0, y(1) = 1

14.52 ∫ √
y

′2 + x

2

dx

14.53 ∫ (
xy

′2 + y

2∕x
)
dx, y(1) = 0, y(2) = 4

14.54 Prove that a stationary solution to ∫ f (y′)dx

between any two endpoints is always a straight

line for any smooth fun
tion f (y′). Hint: If

you're stu
k pi
k a 
ouple of simple examples

of f (y′) and solve those �rst.

14.55 (a) Prove that for the integral ∫ x

f

x

0

y

′
f (y)dx any fun
-

tion y(x) is a stationary solution regardless of the

fun
tion f (y).Hint: If you're stu
k pi
k a 
ouple

of simple examples of f (y) and solve those �rst.

(b) To see why this happened, start with a spe-


i�
 example: ∫ 1

0

y

′
y

2

dx subje
t to the bound-

ary 
onditions y(0) = 0, y(1) = 1. Evaluate

this integral. You should be able to get a spe-


i�
 numeri
al answer without knowing what

the fun
tion y(x) is. Same hint as above: if

you're stu
k try doing this for y(x) = sin(�x∕2).

You should be able to see that the basi
 pro-


ess you use for that 
ase 
an work for any

y(x) that meets the boundary 
onditions.

(
) Now generalize that result to explain why all

fun
tions y(x) are stationary solutions of the

integral ∫ x

f

x

0

y

′
f (y)dx for any fun
tion f (y).

14.56 Prove that the shortest path between two points on

the plane ax + by + 
z = 0 is a straight line.

14.57 Find a formula for the shortest path between

two points on the paraboli
 
ylinder y = kx

2

.

You should get as far as writing z(x) as an inte-

gral by hand, but you're wel
ome to turn that

slightly messy integral over to a 
omputer.

14.58 Ce
elia is in her lifeguard stand at the edge of

the water. Take her stand to be at the origin and

take the y axis to point dire
tly out to sea. The

water is shallow enough that she runs through it

to res
ue swimmers, but the deeper she goes the

slower she runs so her speed is v = v

0

− ky

2

.

(a) Write a differential equation for the qui
kest

path she 
an take to rea
h a drowning swimmer

at position (W ,H). (These are 2D 
oordinates

be
ause we're assuming the swimmer is at the

surfa
e. TakeW and H to be positive.)

(b) Without solving the differential equation

(yet), sket
h what the path should look

like. Explain how you know if it will be

straight, 
urved up, or 
urved down.

(
) Take the swimmer's position to be (1, 1),

v

0

= 1, and k = 0.5. Solve the equation you

found and plot the optimal path. If it doesn't

mat
h your expe
tation �gure out whether your

logi
 or your 
al
ulations went wrong.

14.59 The ele
trostati
 potential from a point 
harge q at

a point P is kq∕r, where k is a 
onstant and r is the

distan
e from P to the point 
harge. For a 
ontinu-

ous 
harge distribution you �nd the potential at P by

breaking the 
harge into pointlike pie
es and inte-

grating. A string of uniform 
harge per unit length �

needs to 
onne
t the points (L, 0) and (0, 2L). Find

the path of the string that minimizes the potential

at the origin.Hint: start by �nding a polar 
urve

�(�), and rewrite it as �(�) after you �nd it.

14.60 The Beltrami Identity It 
an be shown that the

Euler-Lagrange equation is equivalent to the

equation )f ∕)x − d∕dx[f − y

′()f ∕)y′)] = 0. This

form is generally less useful for solving problems,

but when f doesn't depend on x this simpli�es to

f − y

′()f ∕)y′) = C, whi
h is known as the �Beltrami

identity.� In Se
tion 14.2 we derived the equation

for the shortest distan
e between two points on a

45

◦

one. In this problem you'll redo that 
al
ula-

tion using the Beltrami identity. The starting point

was the distan
e formula: ds =
√
2dz

2 + z

2

d�2

.

(a) In Se
tion 14.2 we fa
tored out dz to write

an integral in terms of a fun
tion �(z). Why

did we 
hoose to do it that way instead

of writing it in terms of z(�)?

(b) This time fa
tor out a d� and write an integral

for the distan
e s in terms of the fun
tion z(�).
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(
) Use the Beltrami identity to write a dif-

ferential equation for z(�).

(d) You 
ould solve this equation with separation

of variables, but the integral turns out to be a

pain. Instead, plug in the solution we already

found for z(�) and verify that it solves the dif-

ferential equation you wrote in Part (
).

14.61 Suppose you were asked to �nd stationary

solutions to ∫ (
y

2 + x

2

y

′
)
dx.

(a) Apply the Euler-Lagrange equation in the usual

way. What equation do you end up with?

You should �nd that you get an exa
t answer

with no arbitrary 
onstants, even though we

didn't spe
ify boundary 
onditions.

(b) Suppose you wanted to minimize this par-

ti
ular integral between the points (0, 0) and

(1, 1). What does your solution to Part (a)

imply about the best 
urve to 
hoose?

(
) Suppose you wanted to minimize this par-

ti
ular integral between the points (0, 0) and

(1, 2). What does your solution to Part (a)

imply about the best 
urve to 
hoose?


