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CHAPTER 14

Calculus of Variations

Before you read this chapter, you should be able to...

» solve ordinary differential equations (ODEs) using the methods of “separation of variables” and
“guess and check” (Chapter 1).

It is also helpful, but not essential, to be able to solve basic optimization problems. This skill in one variable
is not discussed in this book, although the multivariate equivalent is discussed in Chapter 4. In the same
helpful-but-not-essential category come line integrals (Chapter 5).

After you read this chapter, you should be able to...

o explain what a “variational problem” is.

« use the “Euler-Lagrange equation” to solve variational problems.

e derive the Euler-Lagrange equation.

« solve mechanics problems by using the “principle of least action” to represent them as variational
problems.

An optimization problem seeks to minimize or maximize some value. In first year calculus you find
one number (such as a position or time) that optimizes your objective. In multivariate calculus you
might find two or more numbers, such as a point (x,y) on a plane. In a “variational problem” your
goal is to find an entire function. An example would be finding the shortest path between two points
along a curved surface like a cone.

In Section 14.2 you will learn the “Euler-Lagrange equation.” This remarkable formula starts
with a variational problem and produces a differential equation; if you can solve that equation, you
have found the function that optimizes your objective. In Section 14.3 you will see where the Euler-
Lagrange equation comes from. Section 14.4 will highlight one particularly important application
of this technique, the Lagrangian formulation of classical mechanics.
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2 Chapter 14 Calculus of Variations

14.1 Motivating Exercise: Rescuing the Swimmer

Each chapter begins with a “motivating exercise” for the students to work through in class or as
homework before studying the chapter. They are optional, but if you use them it can help the students
understand why they are learning the material in the chapter.

You are working as a river lifeguard when you see a man starting to drown.

&

In each of the scenarios below, the question is the same: draw the path that will take you most quickly
to the drowning man. In the first scenario you can draw the path exactly. In the others, your goal is
a rough qualitative sketch.

* You move at the same speed in water as you do on land.

» Your speed on land is twice as fast as your speed through the water.

o The water gets deeper as you get farther from shore, and you are walking the whole way. So
you enter the water at the same speed you had on land, but the farther you get from shore, the
slower you walk.

We wish to call your attention to several features of this problem. It is an optimization problem, in
which you are trying to minimize a particular quantity (time). But especially in the third scenario,
you are not minimizing time by finding some other numerical variable (as in traditional optimization
problems); you are finding a function (a curve) that minimizes the time. Problem of the form “find
the function that minimizes this integral” will occupy this entire chapter.

14.2 Variational Problems and the Euler-Lagrange
Equation

A “variational problem” means “find the curve that minimizes this integral.” The Euler-Lagrange
equation replaces such a problem with a differential equation. When you solve the differential
equation (using for instance the techniques of Chapters 1 and 10), you find the function that minimizes
the integral.

14.2.1 Discovery Exercise: Variational Problems and the
Euler-Lagrange Equation

Most sections begin with a “discovery exercise” that students can do in class or as homework before
covering the section. They are optional, but if the students do them they will derive some of the key
math ideas themselves.

As you work through this exercise your first question may well be “why on Earth would anyone
want to do this?” We always encourage that question, but put it on hold for the time being. By the end
of the chapter we hope to have convinced you that problems like this one can hold great importance.
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Here is the problem. In each of Parts 1-3 we are going to specify a curve y(x) that extends from
(0,0) to (1, 1). You are going to compute the following quantity along each curve.

1
/0 (y'2 + 10xy) dx

Example problem: y = x°
Solution to example problem: We replace y with x2, and therefore y’ with 2x, in the formula we

are integrating.

1 1
/ [(2x)? + 10x(x?)] dx = / (4x% +10x°) dx = %(1)3 + %(1)4 —0~3.83
0 0

1. y=x

2. y=x3

3. y=x*

4. Draw a pretty large graph with (0, 0) at the bottom left and (1, 1) at the top right. On this graph

draw the four curves above and label each curve with a number representing its integral. For
instance, the curve y = x* should be labeled with the number 3.83.

5. A “variational problem” calls for you to find the curve that minimizes an integral such as this
one. Based on your results, sketch in the curve that you think would minimize this particular
integral.

In Problem 14.3 you will return to this function and see how close your sketch came to the optimal
curve.

14.2.2 Explanation: Variational Problems and the Euler-Lagrange
Equation

The following are all examples of variational problems.

1. Find the shortest path between two points on a plane. On a sphere. On a cone.

2. You’re going to roll a toy car made of pinewood down a curved track that ends 10 feet down
and 40 feet across from where it started. What track shape will get the car to the finish line in
the least amount of time?

3. Draw a curve between the origin and the point (1, 1) and then revolve that curve around the y
axis to form a surface of revolution. What curve will minimize the surface area of the resulting
surface? (The solution to this problem describes the shape of a soap bubble with appropriate
constraints.)

In each case you are trying to find the function that minimizes an integral." Below we focus on one
of these examples; you will solve the rest in the problems.

Skating on an Ice Cream Cone

The picture below shows the cone z2 = x? + y? (for z > 0), and two points on that cone. What is the
shortest path along the cone from point P, to point P,?

"Most variational problems involve minimization, but you could be maximizing instead.
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The most obvious approach is to approximate a straight line as closely as possible, always moving
around-and-up. But circling around the cone takes less distance at lower heights, so perhaps we
should go around horizontally from P; and then up to P,. Or maybe even dip down a little below P,
as we go around. It isn’t obvious, is it?

To approach this problem quantitatively we need a formula for the total distance along any given
curve. Then we will need to find the curve that minimizes that formula.

A natural way to specify any given point on this cone is by giving its cylindrical coordinates z and
¢. An arbitrary small step along this cone changes both of those variables, and the distance of such a
step is ds = /2 dz? + z2d ¢*. That formula is not obvious, and you will derive it two different ways:
geometrically in Problem 14.17 and algebraically in Problem 14.18. But here we want to focus on
what to do with that formula once we have it.

As a first step we need to express the total distance along a curve in terms of one variable. You
cannot express an arbitrary location on the cone with one variable, but you can express an arbitrary
location on any given curve with one variable. If a curve is defined by a function ¢(z), we can use
that function to replace d¢ with dz.

2 .
s=/ds=/\/2dzz+zzd¢2=/\/2d12+12 <?dz> =/ V2+22¢%dz (14.2.1)
z o

Focus on the middle step in that sequence: the replacement of d¢ with (d¢/dz)dz to set up an integral
in one variable represents a fairly common technique in such problems.

At this point, if we gave you a particular curve—that is, a function ¢(z) and the coordinates of
two points P; and P,—you would know just what to integrate to find the total distance. That would
be the sort of problem we asked you in the Discovery Exercise (Section 14.2.1).

But our job is to find the ¢(z) curve that minimizes the integral in Equation 14.2.1. First we're
going to talk briefly about variational problems in general, and then we will introduce the formula
that solves them. Finally, with new tools in hand, we will circle back to our cone problem.

The Generic Variational Problem
Any variational problem can be expressed in the following way.

1. You are given two points (x,, y,) and (x7, y,). You are going to find a curve, expressed as y(x),
that extends from the first point to the second. There are of course infinitely many such curves.

2. You are also given a function f(x, y,y’). At any given point on any given curve, x and y and y’
have specific values so f has a specific value. Note, however, that the same point on a different
curve might have a different y’ and therefore a different value of f.

3. Your job is to find the curve that minimizes the following integral:

X
/ fx,y,Y)dx  the generic objective function (14.2.2)
xll

That may look hopelessly abstract, but it’s often easy to calculate for specific examples. For instance,
in the Discovery Exercise (Section 14.2.1) the function is f(x,y,y’) = y"> + 10xy and the endpoints
are (x,,y,) = (0,0) and (x;, y,)=(1,1). To integrate this function along the curve y = x2, we replace
y with x? in the integral and y’ with 2x.

1 1
/ [(2x)? + 10x(x?)] dx = / (4x% +10x°) dx = g(l)3 + %(1)4 —0~3.83
0 0

In the Discovery Exercise you integrate the same function along a few other curves. We urge you to
give that a try if you haven’t already; five minutes of setting up integrals will do you more good than
twenty minutes of staring at the last few paragraphs.
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You may also want to look back at the cone example above. Note how a geometrical scenario led
us to minimizing L iB V2 + z2¢’? dz, and make sure you see how this fits the template of a variational
problem.

Finally, it can be instructive to consider how this topic relates to line integrals. In a variational
problem we are given a particular function to integrate along a particular curve. Isn’t that exactly
what a line integral does? Well, yes and no.

A variational problem starts with a function f(x,y,y’) and a curve. At each step along the curve
it multiplies the value of the function by the horizontal distance dx, and then adds them up. That’s
what Equation 14.2.2 says.

A line integral? starts with a function f(x, y) and a curve. At each step of the curve it multiplies
the value of the function f(x, y) by the diagonal distance ds, which can be expressed as /1 + y'2 dx,
and then adds them up.

X xr
/ fx,y)ds = / FaNV1+y2dx  the generic line integral (14.2.3)
Xo Xo

Our point, and we hope you can see it, is that Equation 14.2.3 is a special case of Equation 14.2.2,
Every line integral can be used as the basis for a variational problem, but not every variational
problem comes from optimizing a line integral.

The Euler-Lagrange Equation

If you’ve followed us to this point you understand what kinds of functions we are integrating, and
why we might want to minimize those integrals. But we haven’t said anything yet about how to
minimize them.

We’re ready now to jump to the answer. In an introductory calculus optimization problem you find
the “critical points” where f/(x) = 0 and you know that your minimum or maximum must be at one
of them. In a variational problem you find the “stationary solutions” by plugging into the formula
below, and your solution will be one of them. Usually the boundary conditions will restrict you to
one stationary solution and you’re done.

The Euler-Lagrange Equation

The function y(x) that minimizes or maximizes the integral
f
/ JO.Y' %) dx
EY)

subject to the boundary conditions y(xy) = y,, y(x;) = y; obeys the following differential equation, subject

d (of of _
o (Ty) 55 0 (14.2.4)

to the same boundary conditions.

We will derive Equation 14.2.4 in Section 14.3. Here we want to focus on how and when to use it,
starting with this cautionary note: mind the distinction between partial and total derivatives. When
you evaluate df /dy’ you treat y’ as the variable and everything else as a constant, so the derivative
of y or x is zero. Similarly when you evaluate df /dy. But the d /dx operator is a total derivative, so
the derivative of y is y’ and the derivative of y’ is y”’.

2To be precise, “the line integral of a scalar function in two dimensions”
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The Euler-Lagrange equation

Problem:
Find the function x(r) that minimizes the integral / [(x + %)? + 3x%] df from x(0) = 0 to
x(1) = 1. (Remember that x means the derivative of x with respect to time.)

Solution:

First calculate the derivatives in the Euler-Lagrange equation. Note that ¢ is the independent
variable (the role x had in Equation 14.2.4) and x is the function we are varying, so the
Euler-Lagrange equation reads (d /dr)(df /0x) — (df /0x) = 0. The function f is the
integrand, (x + x)% + 3x2.

i =2(x+x)
f -
d_f =2(x+ %)+ 6x =2x + 8x

Plugging these into the Euler-Lagrange equation and dividing by 2 gives ¥ — 4x = 0, with
solution x(¢) = Ae* + Be™? . To find the arbitrary constants plug in the boundary conditions
x(0) = 0 and x(1) = 1. That gives A + B = 0 and Ae? + B/e? = 1 with solution
A=1/(*—-¢72),B=-A.

(1) = X — e or x(f) = sinh 27
22 "~ sinh2

We’ll leave it to you to argue that this must be a minimum rather than a maximum.

A Shortcut for Functions That Involve y’ But Not y
Suppose you want to optimize the integral / (x/y")dx.

X of x of
— g —_— =, — =
oy y? oy

So the Euler-Lagrange equation promises that any stationary solutions must fit the following differ-
ential equation.

d X

L(-L)=o

dx < y? >

If you take that derivative using the quotient rule you get (=y’*> + 2xy’y”’)/y'* = 0 and brew another
cup of espresso to get you through a long night. But there is a shortcut. If d /dx<something> is zero,
then the <something> must be a constant. That leads us to a first order differential equation that we
can easily solve.

—)%=C - y'=C\/; - y=Ax3/2+B

(We defined A = 2C/3 to simplify the final answer.) Take a moment to convince yourself that you
can use this shortcut any time the objective function has no explicit y-dependence.
There is also a shortcut for simplifying problems that involve yand y’ but not x. See Problem 14.60.
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And Now, Back to Our Cone
Equation 14.2.1 gives the distance along any curve ¢(z) on the cone 7> = x? + y%.

B
s=/ V2+ 2¢? dz
2

Our goal is to find the curve that minimizes this integral. Recognizing a variational problem, we
begin by finding a few derivatives.

of 2¢' of
=1/2 22 - _— =\ — =0
fF=vV2+2z2¢ op i 9

Did you wonder, when we first wrote Equation 14.2.1, why we represented our curve as ¢(z) instead
of z(¢)? The reason was that our integrand, which in its original form was /2 dz? + z2d ¢?, explicitly
contained a z but no ¢. When solving for a ¢(z) function with no ¢ in the integrand we can use the
shortcut described above: rather than solving (d /dx)(df /d¢’) = 0 directly, we set f /0¢’ equal to a
constant C. With a bit of algebra we can solve for ¢'.

V2ce
V72 = C?

This looks ugly but with the substitution C = zsin a (or a computer) you can get pretty quickly to

the solution.
$(2) = V2 sin™! <9> +D

Z

¢ =

Having solved for a ¢p(z) function to get the solution easily, it’s easier to work with if we now invert
it.
A

sin ((]5/\/5 +B>

The constants A and B can be chosen to connect any two arbitrary points on the cone. The picture
below shows this curve for two representative endpoints. As we suspected it might, it dips down in
the middle for the shortest journey.

wP) =

14.2.3 Problems: Variational Problems and the Euler-Lagrange
Equation

7

14.1 Walk-Through: The Euler-Lagrange Equation. (a) Calculate df /dy. Remember that this is a partial

In this problem you will find the function y(x)
ini 1 7 2 / . .

that minimizes the integral /1 SOy, x)dx (b) Calculate of /dy’. (This time treat x

where /= y* /x + xy'?, subject to the bound- and y as constants.)

ary conditions y(1) =0, y(2) = 1.

derivative so you will treat x and y’ as constants.

Page 7
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(¢) Calculate (d/dx)(af /dy"). This s a total deriva-
tive, so you will treat x, y and y’ as variables,
remembering that the derivative of y’ is y”.

(d) Plug your formulas into the Euler-Lagrange
equation to get a differential equation for y(x).

(e) Find the general solution to that equation. Hint:
Try guessing a solution of the form y = x”.

(f) Use the boundary conditions to solve for the
arbitrary constants and find y(x).

% [This problem depends on Problem 14.1.]
In Parts (a)~(d), evaluate [ (y*/x + xy")dx
along the given curve from (1, 0) to (2, 1). For
instance, if we gave youy = (x* — 1)/7, you
would write y’ = 3x?/7 and then:

/2 7[()63_1)/7]2“(3—)52 e~ 2062
L x 7 o

You should express all your answers as
decimals, as we did here.

@y=x-1
) y= (=1
©y=2""-1

(@) y=(nx)/(In2)

(e) Calculate the same integral along the path
you calculated in Problem 14.1. Show that
this path does indeed minimize the integral,
at least among these six choices.

(f) Find one more function that connects
these two points and evaluate the inte-
gral along that function.

[This problem depends on the Discovery Exercise

(Section 14.2.1)] In the Discovery Exercise

you integrated y'> 4+ 10xy from (0, 0) to (1, 1)

along several different curves.

(a) Use the Euler-Lagrange equation to show that
the curve that minimizes this integral between
any two pointsis y = (5/6)x* + C;x + C,.

(b) Find the curve that minimizes this inte-
gral between (0, 0) and (1, 1).

7in x 10in Felder
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14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15

/(" =y*+2y)dx

Jo (2 =) dx. y(©0) = y(1) =0

Jx (' +y7?)dx

J (572 +xy) dx, y(0) = 0, y(1) = 1

Ji1 (1 +x)y7dx, y(0) = 0, y(1) = 2In2

[ (57 = 2xyy’) dx

S22 = 2xpy +3') dx, y(0) = 0,5(2) = 1
S (02 43y = y?) dr,y(©0) = 0,3(x/2) =2
J (5> +y* +ysinx) dx

(' +x2y?) dx

[ sin(y”? + 1)dx Hint: the resulting differ-

ential equation is easier than it looks if you
think about what it’s saying.

14.16

14.17

(c) Compute the integral along that curve and show

that your result is lower than any of the inte-
grals you found in the Discovery Exercise.

(d) Sketch the curve. Does it roughly match the pre-

diction you made in the original Exercise?

In Problems 14.4-14.15 find the function y(x) that is a
stationary solution for the given integral. If boundary
conditions are given plug them in to solve for any
arbitrary constants in your solution. If the integrand
contains y’ but not y consider using the shortcut described
in the Explanation (Section 14.2.2.)

14.4

/ (yrz _yz) dx

In Problem 14.2 you analyzed the function from
Problem 14.1 for a number of different paths, show-
ing that the stationary solution you found does in
fact represent a minimum. Choose a problem that
you solved from Problems 14.4-14.15 and do the
same kind of analysis. Choose a problem that speci-
fied beginning and end points, and find at least three
functions—in addition to the one you found as the
solution—that connect those two points. (You don’t
need to have done Problem 14.2 to do this.)

In the Explanation (Section 14.2.2), when we found
the shortest path between two points on the cone z* =
x? + y2, we focused on the use of the Euler-Lagrange
equation to solve the variational problem. But setting
up that problem required finding the length ds of a
differential step along the cone. In this problem you
will derive that ds geometrically; in Problem 14.18
you will reach the same conclusion algebraically.
Note that you can specify any arbitrary point
on this cone by giving its cylindrical coordinates
z and ¢. We therefore begin by representing an
arbitrary step ds as a combination of two sepa-
rate steps: one that changes z without changing ¢,
and one that changes ¢ without changing z.

e

(a) From the equation z> = x” + y* we can see that
this cone makes a 45° angle with the horizontal.
Explain how we know that. (This fact is going
to be important for both the dz and d¢ steps.)

cl4dtex V3-June8, 2016 9:04 AM.
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(b) Move in a diagonal line directly up the
cone, changing z but not ¢. If your z-
coordinate goes up by dz, how long is the
diagonal line you have traversed?

(¢) Now move in a circle around the cone, chang-
ing ¢ but not z. If your ¢-coordinate advances
by d¢, how long is the arc you have traversed?
You may find it easiest to start by writing your
answer in terms of p, the radius of the cone at
whatever height you're at. If you do you should
go on to express p as a function of z so your
final answer only depends on z and d¢.

(d) To find the length of an arbitrary move ds,
involving changes to both z and ¢, use the
Pythagorean theorem to put together your
two previous results. You can check your
answer by making sure it matches the for-
mula we used in the Explanation.

In the Explanation (Section 14.2.2), when we found

the shortest path between two points on the cone z* =

x% + y?, we focused on the use of the Euler-Lagrange

equation to solve the variational problem. But set-

ting up that problem required finding the length ds of

a differential step along the cone. In Problem 14.17

you derived that ds geometrically; in this problem

you will reach the same conclusion algebraically.

(a) Write the distance ds for an arbitrary move in 3D
in terms of the Cartesian intervals dx, dy, and dz.

(b) Write formulas for the Cartesian coordi-
nates x, y, and z in terms of the cylindri-
cal coordinates p, ¢, and z.

(¢) The cone in that problem was defined by the
relationship z2 = x? + y?. Write that equation
as a relationship between z and p without
any x or y in it. Use that relationship to elim-
inate p from your answers to Part (b).

(d) Use your answers to Part (c¢) to write dx and
dy in terms of d¢ and dz. (These expressions
will only be valid for intervals along the cone
because you used the formula for the cone when
you eliminated p from the equations.)

(e) Plug these answers into your expression
for ds and simplify. You can check your
answer by making sure it matches the for-
mula we used in the Explanation.

Problems 14.19-14.22 involve finding the shortest
distance between two points on various surfaces. (This is
called the “Geodesic problem.”) We provide a model for
this process in the Explanation, using a cone as the surface.

Choose an appropriate coordinate system where you
can use two variables to specify a point on the surface.
Find the distance of a step ds along the surface in the
coordinate system you are using. You can approach this

14.19

14.20

14.21

14.22

geometrically as in Problem 14.17, or algebraically as
in Problem 14.18.

Rewrite ds in terms of only one coordinate on a curve.

You can now express the Geodesic problem as a vari-
ational problem. Solve it.

Prove that the shortest path between two points
on the xy plane is a straight line.

Find the shortest distance between two points
on the cone z2 = 4(x2 + y?) (for z > 0).

Find a formula for the shortest path between
two points on the cylinder defined by x* + y*> =
R?. Describe the resulting shape.

Find a formula for the shortest path between two
points on the sphere x> + y* + z2 = R%. Hint:
parametrize your path as ¢(6) where ¢ and 6 are
the angles in spherical coordinates. You should
be able to get a first-order differential equation
for your path with an arbitrary constant on the
right. If you choose your z-axis to pass through
the initial point on your path then you can argue
that the constant must be zero. That should reduce
the equation to something you can solve.

14.23

14.24

A Soap Bubble Consider a curve connecting two
points. The function y(x) that minimizes the surface
area you get when you rotate that curve around the
y-axis is the shape a soap bubble between two rings
would form in the absence of gravity. A small seg-
ment of the curve has length ds = 1/dx? + dy?; when
rotated about the y-axis this segment sweeps out a
cylindrical area dA = 2zx ds = 2zxy\/dx? + dy?.
(a) Find the function y(x) that minimizes this area.
Your answer will have two arbitrary constants.
Hint: you should end up reducing the prob-
lem to an integral. You can solve that integral
on a computer or look it up in a table.

[

(b) Solve numerically for the constants
if the curve connects (1, 1) and (2, 0).
Plot the resulting path.

(c) Is the curve you plotted straight, concave up, or
concave down? Explain why that makes sense
physically. (If you didn’t do the computer part
you should still be able to do this part by pre-
dicting what the curve should look like.)

Exploration: Fermat’s Principle The speed of light
depends on what medium it is traveling through, with
¢ (the speed of light in a vacuum) being the fastest
possible speed. When light moves from one medium
to another it changes both speed and direction.
Consider a light beam that travels from the origin
to the point (2, 2). In the following scenarios you
will calculate the path this light beam takes. Your
guide will be “Fermat’s Principle,” which tells us in

cl4dtex V3-June8, 2016 9:04 AM.
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these cases that the light will follow the fastest path

possible from its starting to its ending position.

(a) First, assume the entire xy plane is a vac-
uum, so the light travels at c. What path will
the beam take from (0, 0) to (2, 2)? You can
figure this out with no calculations.

Now assume that from x = 0 tox = 1 is a vacuum,

but from x = 1 to x = 2 is a medium in which light

travels at 0.9c. The beam will travel in a straight line
path to x = 1, and then change direction and follow

a different straight line to reach the point (2, 2).

(b) Will the light reach x = 1 at exactly the point
(1, 1), or slightly below that point, or slightly
above it? Explain qualitatively how your
answer follows from Fermat’s principle.

(¢) Write a function for the total time it takes
the light beam to complete its journey.

The variable in this function will be the y-
position of the light beam when x = 1. (A
drawing will really help here.)

(d) You can find the minimum time by setting dr /dy
equal to zero. Write the resulting equation. You
can simplify it a bit, but not a whole lot.

(e) Solve the equation. If your answer
does not agree with your answer to
Part (b), fix one of them.

Now assume that fromx =0tox =2isa
medium that gradually changes, such that the
speed of light is v = ¢(1 — x/10).

(f) Will the light follow a straight line from (0, 0)
to (2, 2), or a concave up curve, or a concave
down curve? Explain qualitatively how your
solution follows from Fermat’s principle.

(g) Write a formula for the distance ds the light
travels in an infinitesimal step in its journey.
Your formula will depend on dx, the horizon-
tal distance travelled, and on the function y(x)
for its path. Use that result to calculate the time
dt such a journey makes. Then use that result
and calculus of variations to set up a differen-
tial equation for the curve y(x). Hint: You might
end up with a second order ODE, but you can
end up with a first order, which is preferable.

]

Solve the differential equation

using the boundary conditions y(0) = 0,
¥(2) = 2 to find the path y(x) taken by the

(h)

14.25

14.26
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light. Sketch the function and make sure its
shape matches your answer to Part (f). (You
can just ask a computer to plot it and then
copy the sketch into your answer.)

Exploration: The Brachistochrone A bead slides
down a frictionless track under the force of grav-
ity, falling from rest at (0, 0) to arrive at (x/-, yj-)
where y; < 0. The “brachistochrone” is defined
as the curve y(x) that will get the bead to its final
destination in the shortest possible time.
(a) A straight line would be the shortest path,
but it wouldn’t be the fastest one. Explain
why not and sketch qualitatively what the
brachistocrone curve should look like.
(b) Using conservation of energy, find the speed of
the bead at a point (x, y) along the track.
(¢) In a short interval of time the bead travels a
distance ds = 1/dx? + dy?, requiring a time
of dt = ds/v. You need to express the time
dt in one of two ways: as a function of x, y,
¥/ (x), and dx, or as a function of x, y, x'(y),
and dy. Explain why we prefer the latter.
(d) Write an integral that represents the total time
for the bead to fall, and use the techniques
of this section to set up a first order differen-
tial equation for the optimal curve x(y).
(e) Show that the following parametric curve (where
k is any constant) is a solution to your differen-
tial equation: x = k(6 — sin8), y = k(cos @ — 1).
Hint: for a parametrically expressed curve you
can calculate dx/dy as (dx/d0)/(dy/d0).
A curve with this parametric representation is
called a “cycloid,” so you just proved that the
brachistochrone curve is a cycloid.

% [This problem depends on Problem 14.25.]
Consider a particle sliding from the origin
to the point (1, —1). Assume all quantities
are in SI units and take g = 10.

(a) Calculate the constant C for the brachis-
tochrone curve connecting those points.
Plot the resulting curve.

(b) Calculate the time required for a parti-
cle to slide along that curve.

(¢) Compare that time to the time for a par-
ticle to slide along a straight line con-
necting the same two points.

Page 10



7in x 10in Felder cl4.tex V3 -June 8,2016 9:04 AM. Page 11

&

14.3 | Why the Euler-Lagrange Equation Works 11

14.3 Why the Euler-Lagrange Equation Works

As with many formulas, you can use the Euler-Lagrange equation without ever knowing where it
comes from. But going through the derivation once or twice, even if you can’t reproduce it years
later, gives you a deeper appreciation for the nature of the problem you’re solving,.

14.3.1 Explanation: Why the Euler-Lagrange Equation Works

You know that every local minimum or maximum of a one-variable function f(x) must occur at a
point where f’(x) is zero.> Can you explain why? A drawing can be very convincing, but we need
something more mathematical.

Here is one way you can frame the argument. Suppose we claim that f(x) reaches a minimum
at a particular value x = x,,. That means by definition that changing x by a small amount—in either
direction—will not cause f to decrease.

We use dx to represent that small change in x, and dy = f’(x)dx to represent the resulting change
in the functionf. With that notation, the argument goes like this. If f”(x,) is negative, then increasing
x (moving to the right) will cause f to decrease. Conversely, if f’(x,) is positive, then decreasing
x will cause f to decrease. In neither case have you found a minimum value for the function! We
conclude that f can only attain a minimum at x; if f’(x,) = 0.

Before you read further, try the following exercise: rewrite the previous two paragraphs for a
variational problem. The goal here is not to arrive at the final answer (the Euler-Lagrange equation),
but to frame the question properly. One cautionary note: in the above discussion, y and f both
represented the same function. But throughout the rest of this section, y will represent a curve and f
will represent a function that is defined along that curve.

...pause while you write...

Hopefully you started with something like this: “Suppose we claim that/ = / f, Yy, x)dx reaches
a minimum along a particular curve y(x). That means by definition that changing y(x) by a small
amount—in any possible way—will not cause / to decrease.”

If you went on from there to discuss dy and df /dy, you’re doing great. But later you run into
some confusion because two different kinds of dy show up in the same argument. We’re going to
introduce some new notation to distinguish between them.

1. Good old dy means “I am moving along a curve by a small dx (moving from left to right if dx
is positive) and seeing the resulting change in y.” So dy/dx is the slope of the curve as always.

2. The new 6y(x) means “At each x-value I am changing the value of y by changing the curve
itself.” That causes a change 6/, and finding a formula for that change is going to be one of
our main tasks in this section.

y(x}+3y(x)

y(x}

3or is undefined, but we will confine our discussion to differentiable functions
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Don’t confuse this new 6 with the old 0 for a partial derivative, which we will also of course be
using!

With that notation in place, the rest of the argument looks much the same as it did the first time. If
a particular infinitesimal change 6y(x) results in a negative 6/ then that change will decrease 7, so we
can’t be at a minimum. And if it results in a positive 61 then the opposite change —oy(x) will decrease
I, so we still can’t be at a minimum. The optimum curve y(x) must therefore have the property that
any tiny change 6y(x) away from it will give 6/ = 0.

You can make these definitions more rigorous by defining 6y(x) = e#(x) where € is a number and
n(x) is an arbitrary function. Then we require dI /de = 0 for all smooth functions 7(x) subject to
the condition that # = 0 at both boundaries. That last condition occurs because y(x) must meet the
given boundary conditions so it can’t vary at the boundaries. It’s straightforward to rewrite all our
derivations in this section in terms of ¢ and # but we find the §y notation easier to follow.

What we are going to do for the rest of this section is try to convince you that 6/ = 0 for any
small variation §y(x) if and only if of /oy — (d /dx)(df /dy") = 0. In fact we’re going to make three
different arguments: first a visual hand-wave, then a derivation involving integration by parts, and
finally (in Problem 14.31) a derivation based on Riemann sums. But make sure you first understand
what we’ve presented so far: what 6/ represents and why it has to be zero for any small §y(x) if y(x)
is a stationary solution. Without that, the rest of this section won’t mean much.

A Hand-Waving Argument
y

.,

Xc

y(x) (black) and y + 8y (blue)

We begin with a curve y(x) and a function f(y, y’, x) defined along that curve. Then we change y(x)
by a small 6y at a particular x = x,.. Of course, changing y(x) at only that point would make the curve
discontinuous, so we don’t do that; we bend the curve up, as shown above. Then we ask the question,
how does this change affect the value of our integral / = / O/, y, x)dx?

Most directly it changes y. If df /dy is positive, that signifies that increasing y at a particular
x-value will increase f at that value, thus increasing the total integral /. If df /dy is negative then this
effect would decrease 1.

But our bump in the curve also changes y'. Specifically, y’ increases to the left of x,. and decreases
to the right of x,.. If 9f /9y’ is the same on both sides of x,. then the net effect of changing y" will
cancel out. On the other hand, if df /9y’ is larger on the right than on the left, then the effect of a
positive 6y will be to decrease / f dx. (Make sure you see that.) So the change in the integral will
be negative if (d /dx)(df /dy") is positive, and vice versa.

Putting all this together it at least seems plausible that the total change 6/ from a small change
5y(x) will look something like (9f /dy) — (d/dx)(df /dy"). Of course this is not a proof. There could
be other numerical factors, for example. But this hopefully gives you some intuition for why those
particular two terms appear in the Euler-Lagrange equation and why they have the signs they do.
This argument can be made more rigorous by considering the integral as a Riemann sum and then
taking the limit as dx — 0. See Problem 14.31.

As a final note, remember that the above argument centered on a change at a particular x = x,. A
minimum means that no change to y(x) anywhere will cause [ to decrease. So Euler-Lagrange is a
differential equation, requiring that (df /dy) — (d /dx)(df /dy") = 0 everywhere along the curve.

A Real Derivation Using Integration by Parts
We begin once again with the following question. We have evaluated / = f fO, Y, x)dx along a given
curve y(x). Now we introduce a change 6y(x) to the curve. What effect does that have on the integral?
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Consider the f-value at one particular x-value. Here y has gone up by some particular 8§y, and y’
has gone up by 5y’. We can compute the resulting change in f from the chain rule.

of a o,
of = =—o6y+ —96
f o y 3y y
That calculation represents the change in f at one particular x-value. To find the total change in 7,
we add up the changes along the curve.

(9 %)
ol = —féy + —féy’ dx
0 oy’
X0 y y

It’s painfully easy to get lost in the symbols, so keep asking yourself what all the pieces mean.
For instance, consider the second term in that integrand. df /9y’ asks the question—at a particular
x-value—*“if I increased the slope of my curve, all other things being equal, how fast would that
increase the function 7 We multiply that by §y: “when we changed our old curve to our new curve,
how much did the slope change at this point?”” The product gives us part (but not all) of the change in
f caused by changing the curve at this particular x-value. When we add the contribution represented
by the first term and integrate across the entire domain, we get the total change in /.

We next replace 5y’ with (d/dx)(6y). That substitution is not entirely obvious; think about it for
a moment, remembering that 5y’ means the change in the slope caused by 8y. See Problem 14.27.

T (a 9
oI = / <—f5y + —f,i5y> dx (14.3.1)
x \0y ay’ dx
That substitution allows us to use integration by parts on the second term in the integrand.
of d
=2 = (—5 ) d
u Y v 7,07 ) dx

d of
du = <Ea_y’>dx v =6y

of (d of d of
L (£5 =ZLsv— [ v 221
/0y’ <dx y) & 0y’6y / g <dx 0y’> &

Plug that back into Equation 14.3.1 and rearrange.

9 & ¥ %) o)
f + / oy <—f - i—f,> dx
x  JIx dy dxady

ol = 3y oy
Remember that a variational problem fixes the endpoints at y(xy) = y, and y(x;) = y,. That means
that any variation 6y that you consider has to go to zero at both ends, so the term outside the integral
is zero.

Now it remains to say what must be true for 6/ to equal zero. In general an integral can equal
zero without the integrand being zero everywhere. But in this case we have to be sure that there
is no possible variation 6y(x) for which 6/ # 0. The only way / dy<stuff>dx can be zero for all
possible functions oy is if <stuff> equals zero everywhere. (This is the mathematical equivalent of
the argument we made at the end of our hand-wave: the integral / can only reach a minimum if no
change in y(x), anywhere along the curve, can result in a decrease in f'.)

We conclude once again that the stationary solutions occur where (9f /dy) — (d /dx)(df /9y") = 0.
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14.3.2 Problems: Why the Euler-Lagrange Equation Works

Our derivation of the Euler-Langrange equation

included a step in which we replaced 5y’

with (d/dx)(6y). In this problem you will

consider that replacement.

(a) Draw a function y(x). (Make it reasonably sim-
ple, but not as simple as a line.) Now draw a sec-
ond function y + 6y where 8y is the same for all
x-values. What is (d/dx)(6y)—the rate of change
of 6y as you move from left to right—in this
case? What is 6y'—the change of the slope from
the first function to the second—in this case?

(b) Redraw your same y(x) function. Then draw
a function y + 6y where 6§y starts at zero on
the left, and continually increases as you go
to the right. Is (d/dx)(Sy) positive or nega-
tive, and how can you tell from your draw-
ing? Is 6y’ positive or negative, and how
can you tell from your drawing?

(¢) Explain in your own words why, in gen-
eral, 8y = (d/dx)(5y).

The Explanation (Section 14.3.1) presented a deriva-

tion using integration by parts for the stationary solu-

tions to the problem of extremizing / [,y x)dx

subject to fixed boundary conditions at the two ends.

The result was the Euler-Lagrange equation.

(a) Following a similar argument, derive an equation
for the stationary solutions to the problem of
extremizing / f(y,y’,y", x)dx subject to fixed
boundary conditions on y and y’ at the two ends.

(b) Which step in your derivation would not
have been valid if we had only specified y at
the boundaries instead of y and y'?

The Explanation (Section 14.3.1) presented a

derivation using integration by parts for the sta-

tionary solutions to the problem of extremizing

/ f(, ¥, x)dx subject to fixed boundary condi-

tions at the two ends. The result was the Euler-

Lagrange equation. Generalize this argument to

derive the Euler-Lagrange equations for the case of

two curves, [ f(y,',z, 2, x), where y and z are both
functions of x with specified values at the bound-
aries. The formulas you derive in this problem will

be used in many problems in Section 14.4.

[This problem depends on Problem 14.29.]

(a) Write a pair of coupled differential equations
for the stationary solutions that minimize
the integral [ (z? + 2y + 3yz)dt.

(b) If you've studied linear algebra you might
know how to solve those equations, but
here we’ll point you towards one solution:

y(t) = sin(kt), z(t) = —\/E sin(kt). Find the

value of k for which these represent a station-
ary solution to the original integral.

14.31 In this problem you’ll derive the Euler-Lagrange

equation by rewriting / = / [,y ., x)dx as a
Riemann sum / = AlimOR Ax, where
X =
N-1

R= Y [0y (). %]
i=0

with P

X; =Xy +iAx, N = Ax

First you’ll find the critical points for R, and in

the limit Ax — 0 these will becomes the station-

ary solutions for /. Throughout the problem we’ll

use y; and y! to mean y and y" evaluated at x;.

(a) For a finite NV this is a multivariate calcu-
lus optimization, not a calculus of variations
problem. What are the variables that you
are varying in order to find a critical point
for R? Hint: there are N of them.

(b) Consider the effect of increasing y; by an
amount 6y while leaving all of the other
y values constant. Ignoring the effect this
has on y’ for the moment, how much does
this change R? Your answer will depend on
of /dy;, meaning the partial derivative of /' with
respect to y, evaluated at the point x;.

Now consider the effect that increasing y; has

on y’. In the Riemann sum we can approxi-

mate y, with [y,,; —y;_;1/(2Ax).

(¢) Which two y’ values are affected when
you increase y; by 6y?

(d) Figure out how much each of those two val-
ues are affected and put them together to
find the total change in R that occurs because
of y’ when you increase y; by y.

(e) In the limit Ax — O your answer to Part (d)
can be written as 6y times a derivative with
respect to x. Rewrite it that way. Hint: look
at how we wrote y/ as a guide.

(f) Combine your answers to Parts (b)—(d)
to find the total change in R resulting
from increasing y; by dy.

(g) A critical point for a multivariate function occurs
at a point where infinitesimal changes in any of
the variables leads to zero change in the function.
You just considered the effect of a change in y; on
R.If you assume that 6R resulting from a change
in any of the y; equals zero, your answer becomes
a differential equation for y. Write that equation.

Page 14



7in x 10in Felder cl4.tex V3 -June 8,2016 9:04 AM. Page 15

&

14.4 | Special Application: Lagrangian Mechanics 15

Note that this derivation isn’t quite complete the endpoints to satisfy the boundary condi-
because the formula we used for y’ isn’t valid tions, however, the derivation is valid.
at the two endpoints. Since 6y must be zero at

14.4 Special Application: Lagrangian Mechanics

A century after Newton presented his three laws of motion, Joseph-Louis Lagrange introduced an
alternative. Lagrange’s approach and Newton’s give the same prediction in any situation, and you
can use either one to derive the other. But “Lagrangian mechanics” starts from a different set of
postulates and, in many cases, is more convenient for calculations than F = ma.

Lagrangian mechanics offers particular benefits when all the forces involved are “conservative”
(see Chapter 8). In such a case you can describe a potential energy for every possible configuration
of particles, which is equivalent to specifying all the relevant force laws. In this section we will
consider only conservative forces.

The Principle of Least Action

relaxed current
position position
(x=0)

To solve for the motion of a mass on an ideal spring, you might write the differential equation that
represents Newton’s second law: F = mX = —kx. (We’re going to use the dot notation for time deriva-
tives a lot in this section. Remember that ¥ means d%x /dr?.) Alternatively, because the forces involved
are conservative, you might write the differential equation that represents conservation of energy:
KE + U = (1/2)mx? + (1/2)kx? = C. These two approaches are based on fundamentally different
premises, but they lead to the same final solution: x() = A sin (\/k/m t> + Bcos (\/k/m t). You
choose one approach or the other based on mathematical convenience.

Lagrangian mechanics starts from a premise that is quite different from either ¥ = ma or conser-
vation of energy.

The Equation of Motion in Lagrangian Mechanics

1. The “Lagrangian” of an object is its kinetic energy minus its potential energy: L = KE — U.

N

“Action” is the time integral of an object’s Lagrangian as it moves along a given trajectory: S = [ L dt.
3. The “Principle of Least Action” says that in moving from position x(#,) = x, to position x(;) = x;
the object will follow the trajectory x(7) that minimizes the action.*

Find the trajectory that minimizes an integral? Hey, it’s a variational problem! We therefore approach it with
the Euler-Lagrange formula, this time applied to a function L(x, %, t) instead of our old f(y, y’, x).

i (5) 50

“Strictly speaking the principle says that the trajectory will be a stationary solution, which could be a minimum or a
maximum. In practice it’s almost always a minimum. The principle is sometimes called the “Principle of Stationary
Action.” It’s also sometimes called “Hamilton’s Principle.”
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We can illustrate the use of this equation using the same example we solved with Newtonian
methods above.

An Object on a Spring

Problem:
Find the position x(¢) of a mass m attached to an ideal spring with spring constant k.

Solution:
The potential energy of a mass on an ideal spring is U = (1/2)kx?. The Lagrangian is
KE - U.
L= lm)'c2— lk)c2 - O—L = mx, 4 (0—L> = mX, oL = —kx
2 2 ox dr \ ox ox

So the Euler-Lagrange formula in this case becomes mX + kx = 0. This is the same
differential equation we got from F' = ma so of course it leads to the same solution,

x=Asin<\/k/_mt> +Bcos<\/k/_mt).

Generalized Coordinates

The example above led to the same equation we got from Newton’s second law, only with more work
on our part. You'll show in Problem 14.32 that it’s simple to derive Newton’s second law from the
principle of least action. So, why are we doing this?

There are a number of reasons why Lagrangian mechanics is useful. One is that it generalizes to
systems where Newton’s laws don’t apply. You can write down Lagrangians for relativistic particles,
for fields, or even for the curvature of spacetime in general relativity, and the equations of motion in
all those cases follow from the principle of least action. The postulates of quantum field theory are
most easily stated in terms of Lagrangians (although they are not the same as the principle of least
action, which doesn’t hold for quantum systems).

For classical systems of objects, what makes Lagrangian mechanics useful is that you can write
the Lagrangian in terms of “generalized coordinates”—any numbers that describe the state of the
system—not just Cartesian coordinates. As long as you can express the kinetic and potential energy
of your system in terms of your generalized coordinates and their time derivatives (sometimes called
“generalized velocities”), you can write the Lagrangian and solve the Euler-Lagrange equations. In
many cases this makes complicated problems much easier than they would be with Newton’s laws*.

#You can write Newton’s laws for any set of generalized coordinates, but the equation of motion will not in general be F = ma.
The beauty of Lagrangian mechanics is that the Euler-Lagrange equation in the form we’ve written it applies no matter what
coordinates you use.
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A Bead on a Rotating Rod

Problem:
A bead of mass m is placed on a frictionless rod that is rotating horizontally at a constant
angular speed w. Find the distance p(¢) of the bead from the center of the rotation.

View From Above

Solution:

We will express this situation in polar coordinates,” because the problem determines ¢(r)
explicitly and asks for p(¢). Because the rotation is horizontal there is no potential energy.
The kinetic energy is (1/2)mv>. (Since the motion of the rod is fixed by some external force
we just consider our system to be the bead.) The radial component of velocity is p. The
tangential component is perhaps less obvious, but if you remember that @ = ¢ is the angular
velocity you can convert that to tangential velocity with the formula v,,,4.,is = @p. That
leads to the Lagrangian L = (1/2)mp? + (1/2)me?*p?*. (You could also derive that second
term from the formula for kinetic energy of rotation, KE = (1/2)I ®?, where the moment of
inertia is I = mp?.)

dp
TOR
dt \ dp

d—L :ma)zp

dp

2

The solution is p(f) = Ae® + Be™®'. Unless the initial conditions are perfectly fine-tuned to
set A = 0 the first term will come to dominate and the bead will move away from the origin
exponentially with time.©

As a final note, we know that w has units of one over time, so the arguments of the
exponentials are unitless, as they should be. (When one of the authors first solved this
problem he made a mistake and got e~ but immediately spotted the error when he
checked units.)

bYou may be used to using r and @ for polar coordinates. We use the letters p and ¢ but they mean the same thing:
distance from the origin and angle going counterclockwise from the positive x axis.

“If you're a first or second year physics student, this is caused by interactions between the bead and the rod because
there is no such thing as centrifugal force. If you are a junior physics major or beyond, it’s just due to the centrifugal
force. http://xkecd.com/123
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The example above applies the Euler-Lagrange equation in a simple setting; the example below
demonstrates more advanced techniques that you will need in many of the problems. Note three
differences in particular.

1. The choice of coordinates was obvious in the previous example. The following example better
illustrates how the choice of coordinates can arise from the constraints inherent in the situation.

2. We wrote down the generalized velocities in the previous example with some arguments from
introductory physics. Below we derive our velocities from the equations that convert from
generalized to Cartesian coordinates. (The second approach always works, but the first is
faster and easier when you can do it.)

3. The example below involves minimizing an integral that depends on frwo functions instead
of just one. In such cases you write down the Euler-Lagrange equation separately for each
function. How you do that is demonstrated in our solution; why you can do that is derived in
Problem 14.29.

A Sliding Pendulum

Problem:

A pendulum of length H and mass m is hung from a block of mass M that is free to slide
horizontally, as shown below. Choose an appropriate set of generalized coordinates for this
system and find the equations of motion. (We are using H for the pendulum length so it
doesn’t get confused with the Lagrangian L.)

E my
Solution:

The simplest choice of generalized coordinates is the horizontal position of the block, X, and
the angle 6 of the pendulum, which we define to be zero when it is straight down. It’s easiest
to express the energy in terms of the Cartesian coordinates of the pendulum bob, x and y. The
kinetic energy is (1/2)MX? + (1/2)mx? + (1/2)my* and the potential energy is mgy. (The
block has no potential energy.) Next we have to relate x and y to X and 0 so we can get this
all in terms of our generalized coordinates.

You might wonder why we don’t just use x, y, and X. That would be too many degrees of
freedom; x and y are constrained by the fact that the bob always stays at the end of the
pendulum string. The simplest way to deal with that is to use two generalized coordinates
that describe the motion with no additional constraints required.

If we set y = 0 at the top of the pendulum then y = —H cos 6. For the x coordinate we need
to account for the position of the block: x = X + H sin 6. From these we get y = H(sin 6)6
and X = X + H(cos 0)0 and from those we get the Lagrangian. (Notice that the potential
energy is —mgH cos 6 and the Lagrangian subtracts the potential energy, so it shows up with
a plus sign.)

L= %MX2 + %sz + mH (cos 0)X0 + %mHz(cos2 0)0* + %mHz(sin2 0)0* + mgH cos 0

= %(M +m)X2 + mH(cos 0)X6 + %mHzé2 + mgH cos 6
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For the most part this looks like the Lagrangian for a freely sliding system with mass M + m
plus the Lagrangian for a rotating pendulum of mass m. All of the interaction between the two
motions comes about because of the second term, which couples the two velocities. To see

the effect that has we write the Euler-Lagrange equations for both our independent variables.

oL

OL (M + m)X + mH(cos 0)0 — =mH(cos 0)X + mH*@
0X 00
% <Z—§> =(M + m)X + mH(cos 6)6 % <3—§> =mH (cos 0)X — mH (sin 0)X6
— mH (sin 0)0? + mH>0
oL =0 oL __ mH (sin 0)X6 — mgH sin 0
0X 00

Plugging this into the Euler-Lagrange equations and cancelling some constants we get the
equations of motion for the system.

(M n 1) X + H(cos 0)f — H(sin 9)8% = 0
m
(cos )X — (sin@)X0 + HO + (sin 0)X6 + gsind =0

As a reality check notice that all the terms in both equations have units of distance over time
squared. (It doesn’t matter that the two equations have the same units as each other, but if
two terms in one of the equations had different units from each other we would know we’d
made a mistake.)

Of course you're not likely to be able to solve the equations of motion we just derived for the
sliding pendulum, but you can always ask a computer to do that, numerically if not analytically. What
Lagrangian mechanics allowed you to do was go from the physical description to a set of equations
that you can give to a computer. See Problem 14.40.

As a final note we should say that you can still sometimes use the shortcut we explained in
Section 14.2.2 for variational problems that involve x but not x. If the Lagrangian for one of your
generalized coordinates g involves ¢ but not ¢ itself then the Euler-Lagrange equation for that
coordinate can be written dL/dg = C where C is an arbitrary constant. (We could have used this
shortcut for X in the sliding pendulum problem above but since X shows up in the other Euler-
Lagrange equation this wouldn’t have made the equations any easier to work with.)

14.4.1 Problems: Lagrangian Mechanics

14.32  Consider a particle with kinetic energy (1/2)m? 14.34 A ball with mass m travels under the influence of a
and potential energy U(x). Recalling that constant gravitational force ¥ = mg. Use Lagrangian
F = —dU /dx, prove that the Euler-Lagrange mechanics to write the equation of motion for this
equation for the motion of the particle is equiv- mass, and then solve that equation to show that the
alent to Newton’s second law. resulting motion is a quadratic function y(t).

14.33 Using the equation (1/2)mi* + (1/2)kx* = C 14.35 A comet with mass m is traveling under the influ-
and the initial conditions x(0) = x,,, (0) = 0, ence of Earth gravity, a force F = —GM m/r>.
derive the solution x(r) for a mass on a spring Use Lagrangian mechanics to write the equation
pulled out to a distance x, and released. Check of motion for this comet. You do not need to

that your answer matches the one we got. solve the resulting differential equation.
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14.36

14.37

14.38

14.39

14.40

14.41

14.42
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A massless spring with spring constant & hangs down
from the ceiling. At the end of the spring is a mass m.
(a) Use Lagrangian mechanics to write the equation
of motion for this mass. You do not need to solve
the resulting differential equation (although you
can, if you have gone through Chapter 1).
(b) Use Newtonian mechanics to write the
equation of motion for the same mass. Hope-
fully you’ll get the same answer!
Use Lagrangian mechanics to write the equation of
motion for a pendulum consisting of a ball of mass
m hung from a massless string of length H. You do
not need to solve the resulting differential equation.

In the example on Page 17 we derived and solved

the equations of motion for a bead on a horizontal,

rotating rod. Do the same for a bead on a rod that is

rotating vertically with constant angular velocity w.

In the example on Page 17 we derived and

solved the equations of motion for a bead

on a horizontal, rotating rod.

(a) Redo the problem assuming the rod is slowing
down: w = \/E /t. Find the general solution p(¢).

(b) Now assume that at time ¢ = 1 the system begins,
with the bead at p = 1 with radial speed p = 0.
Solve for the arbitrary coefficients and find p(z).

In the example on Page 18 we found the
equations of motion for a sliding pendulum. Solve
those equations to find the motion if the system starts
at rest with the pendulum pulled up to an angle of
/4. Take H = 1 mand M /m = 2. Have the com-
puter draw the block and pendulum at a series of
times to show what the resulting motion looks like.

In the example on Page 18 we found the equations
of motion for a sliding pendulum. Now sup-
pose the block is not free to move but is pushed
back and forth: X = A sin(wt).
(a) Find the Euler-Lagrange equation for 6(¢).
(b) For small oscillations 6 = 0 you can approx-
imate this differential equation with a lin-
ear one. Make that approximation and solve
the resulting differential equation.
(¢) The equations of motion you wrote in Part (a)
should describe this system accurately,
but your solution in Part (b) is only valid
if @ remains small. What physical circum-
stances would make this a reasonable, or
an unreasonable, approximation?
The picture below shows a ball hanging
from a massless spring that is free to swing
back and forth like a pendulum.

14.43

14.44

14.45

14.46
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Assume the ball has mass m and the spring has spring
constant k and equilibrium length H. Choose an
appropriate set of generalized coordinates and find
the equations of motion for the ball. You do not need
to solve the resulting differential equations.

[This problem depends on Problem 14.42.]
Solve the equations of motion to find the motion if
the system starts at rest with the pendulum pulled up
to an angle of 7z /4 and the spring at its equilibrium
length. Take H = 1 m, k = S N/m, and m = 1 kg.
Have the computer draw the pendulum at a series of
times to show what the resulting motion looks like.

A uniform, solid cylinder of mass m and radius
r is rolling inside a hollow cylinder with larger
radius R. Let s be the arclength from the small
cylinder’s current position to the bottom. The
larger cylinder does not move.

=

(a) Find the Euler-Lagrange equation of motion
fors. Hint: you will need to look up (or calcu-
late) the moment of inertia of a uniform solid
cylinder about its axis. You do not need to
solve the resulting differential equation.

(b) What is the frequency of small oscil-
lations of this system?

A block of mass m is sliding on the inside of a fric-
tionless, hollow, hemispherical bowl of radius R.
Choose an appropriate set of generalized coor-
dinates and write the equations of motion for the
block. You do not need to solve the resulting dif-
ferential equations. (The bowl does not move.)
An iron block of mass m is sliding on the inside of
a frictionless, hollow, hemispherical bowl of radius
R. A uniform magnetic field exerts a constant force
F B? on the block. (The bowl does not move.)
(a) In general magnetic forces cannot be asso-
ciated with a scalar potential energy, but in



14.47

14.48

14.49 A bead of mass m is strung on a wire that is bent into
a vertical circle of radius R. The circle is spun around

this case the magnetic force can. Find the
potential energy for that force.
(b) Choose an appropriate set of generalized coor-
dinates and write the equations of motion
for the block. You do not need to solve the
resulting differential equations.
A block of mass m is sliding on the inside of a fric-
tionless, hollow cone with the vertex at the bot-
tom, height H, and upper radius R. Choose an
appropriate set of generalized coordinates and
write the equations of motion for the block.

A pendulum of length H is suspended from a
point that is being moved about a vertical circle of
radius R with angular speed w. Find the equation
of motion for the pendulum’s angle 6(¢).

its vertical diameter at constant angular speed w.

Cldw

(a) Find the equation of motion for the angle of
the bead on the wire. You do not need to solve
the resulting differential equation.

(b) Your differential equation should have two
or three equilibrium values of 8, depend-
ing on the value of w. Find them, and
explain physically why each one is an
equilibrium point for the bead.

(¢) Identify each of these equilibrium angles
as stable, unstable, or stable under cer-
tain (specified) circumstances.

(d) A stable equilibrium can lead to oscillatory
behavior. Find the frequency of oscillation
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around one stable equilibrium you identified,
assuming these oscillations are small.

14.50 Exploration: Lagrange Multipliers If you want
to minimize the function f(x, y) subject to the con-
straint g(x, y) = 0 you have two main choices. You
can use the constraint to eliminate one variable,
write / as a single-variable function, and optimize
it. Alternatively you can use a Lagrange multiplier to
solve the problem in terms of both variables. (See
Chapter 4.) The same is true for variational prob-
lems. If you want to minimize / O,y 2,7, x)dx
subject to the constraint g(y, z) = 0 you can either
use the constraint to eliminate y or z from the
problem or you can use the following modified
form of the Euler-Lagrange equations.

i (57) -5 =0

dx \ 9y ady dy
9,
i _f — % — /la_g =0
dx \ 97 0z 0z
g=0

For most calculus of variations problems it’s just as
easy to eliminate variables and not worry about A.
In Lagrangian mechanics, however, the new vari-
able 4 gives you the force that holds the object on
the constrained surface. As an example, consider

a block sliding down a hemispherical mound of
radius R. The block starts at rest at the top and is
given an infinitesimal nudge to get it moving.

(a) First use a single generalized coordinate 0
for the block’s angle as it slides down. Write
the Euler-Lagrange equation for 6.

(b) This equation has no simple solution. At a glance
it looks like you could reasonably approximate
the motion by replacing sin 6 with 6. Explain
why this wouldn’t make sense in this case.

(c) Now reconsider the problem with the gener-
alized coordinates r (radial distance) and 6
and the constraint » — R = 0. Find the Euler-
Lagrange equations for r and 6. In writing the
kinetic and potential energy treat r as a free vari-
able; the constraint will come in through 4.

(d) With the constraint » = R you can set
i =7 = 0. Use that to get an expression for A
that only depends on 6, 6, and constants.

(e) Use conservation of energy to express 6 as
a function of 6. Plug this into your earlier
equation to find A as a function of 6.

Page 21
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(f) The constraint force 4 is in this case the
normal force. Find A at @ = 0 and explain
why your answer makes sense.

14.5 Additional Problems

In Problems 14.51-14.53 find the function y(x) that is a

stationary solution for the given integral. If boundary

7in x 10in Felder
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conditions are given plug them in to solve for any arbitrary

constants in your solution. If the integrand contains y’ but

not y consider using the shortcut described in Section 14.2.

14.51
14.52
14.53

[ y7dx, y(0) =0, y(1) =1
[ Ay + 22 dx
J (0% +2/x) dx, (1) =0, y(2) = 4

14.54

14.55

14.56

14.57

14.58

Prove that a stationary solution to / SO dx

between any two endpoints is always a straight

line for any smooth function f'(y). Hint: If

you’re stuck pick a couple of simple examples

of £(y') and solve those first.

(a) Prove that for the integral f r;f Y'f (y)dx any func-
tion y(x) is a stationary solution regardless of the
function f(y). Hint: If you’re stuck pick a couple
of simple examples of f(y) and solve those first.

(b) To see why this happened, start with a spe-
cific example: /01 y'y?dx subject to the bound-
ary conditions y(0) = 0, y(1) = 1. Evaluate
this integral. You should be able to get a spe-
cific numerical answer without knowing what
the function y(x) is. Same hint as above: if
you're stuck try doing this for y(x) = sin(zx/2).
You should be able to see that the basic pro-
cess you use for that case can work for any
y(x) that meets the boundary conditions.

(c) Now generalize that result to explain why all
functions y(x) are stationary solutions of the
integral A ;f Y'f (y)dx for any function f(y).

Prove that the shortest path between two points on

the plane ax + by 4+ cz = O is a straight line.

Find a formula for the shortest path between

two points on the parabolic cylinder y = kx>.

You should get as far as writing z(x) as an inte-

gral by hand, but you’re welcome to turn that

slightly messy integral over to a computer.

Cecelia is in her lifeguard stand at the edge of
the water. Take her stand to be at the origin and
take the y axis to point directly out to sea. The
water is shallow enough that she runs through it

14.59

14.60
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(g) Use your answer for A(0) to predict when
the block will lose contact with the sur-
face of the hemisphere.

to rescue swimmers, but the deeper she goes the
slower she runs so her speed is v = v, — ky?.

(a) Write a differential equation for the quickest
path she can take to reach a drowning swimmer
at position (W, H). (These are 2D coordinates
because we’re assuming the swimmer is at the
surface. Take W and H to be positive.)

(b) Without solving the differential equation
(yet), sketch what the path should look
like. Explain how you know if it will be
straight, curved up, or curved down.

(c) Take the swimmer’s position to be (1, 1),
vo = 1, and k = 0.5. Solve the equation you
found and plot the optimal path. If it doesn’t
match your expectation figure out whether your
logic or your calculations went wrong.

The electrostatic potential from a point charge ¢ at
apoint P is kq/r, where k is a constant and r is the
distance from P to the point charge. For a continu-
ous charge distribution you find the potential at P by
breaking the charge into pointlike pieces and inte-
grating. A string of uniform charge per unit length A
needs to connect the points (L, 0) and (0, 2L). Find
the path of the string that minimizes the potential

at the origin. Hint: start by finding a polar curve
@(p), and rewrite it as p(¢p) after you find it.

The Beltrami Identity It can be shown that the
Euler-Lagrange equation is equivalent to the
equation of /ox — d /dx[f — y'(df /dy")] = 0. This
form is generally less useful for solving problems,
but when f* doesn’t depend on x this simplifies to
f=Y(af/ay') = C,whichis known as the “Beltrami
identity.” In Section 14.2 we derived the equation
for the shortest distance between two points on a
45° cone. In this problem you’ll redo that calcula-
tion using the Beltrami identity. The starting point
was the distance formula: ds = \/2dz? + z2d¢?.
(a) In Section 14.2 we factored out dz to write

an integral in terms of a function ¢(z). Why

did we choose to do it that way instead

of writing it in terms of z(¢)?
(b) This time factor out a d¢ and write an integral

for the distance s in terms of the function z(¢).

Page 22
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(¢) Use the Beltrami identity to write a dif- You should find that you get an exact answer
ferential equation for z(¢). with no arbitrary constants, even though we

(d) You could solve this equation with separation didn’t specify boundary conditions.
of variables, but the integral turns out to be a (b) Suppose you wanted to minimize this par-
pain. Instead, plug in the solution we already ticular integral between the points (0, 0) and
found for z(¢) and verify that it solves the dif- (1, 1). What does your solution to Part (a)
ferential equation you wrote in Part (c). imply about the best curve to choose?

14.61 Suppose you were asked to find stationary (¢) Suppose you wanted to minimize this par-
solutions to / (y2 + 1%y ) dx. ticular integral between the points (0, 0) and

(1,2). What does your solution to Part (a)

(a) Apply the Euler-Lagrange equation in the usual
imply about the best curve to choose?

way. What equation do you end up with?



